This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdabs2 | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( N gcd M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) |
|
| 2 | 1 | ancoms | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) |
| 3 | zabscl | |- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
|
| 4 | gcdcom | |- ( ( N e. ZZ /\ ( abs ` M ) e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) |
| 6 | gcdcom | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
|
| 7 | 2 5 6 | 3eqtr4d | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( N gcd M ) ) |