This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shift the scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 27-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzshftral | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | fzrevral | |- ( ( M e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph ) ) |
|
| 3 | 1 2 | mp3an3 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph ) ) |
| 4 | 3 | 3adant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph ) ) |
| 5 | zsubcl | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 - N ) e. ZZ ) |
|
| 6 | 1 5 | mpan | |- ( N e. ZZ -> ( 0 - N ) e. ZZ ) |
| 7 | zsubcl | |- ( ( 0 e. ZZ /\ M e. ZZ ) -> ( 0 - M ) e. ZZ ) |
|
| 8 | 1 7 | mpan | |- ( M e. ZZ -> ( 0 - M ) e. ZZ ) |
| 9 | id | |- ( K e. ZZ -> K e. ZZ ) |
|
| 10 | fzrevral | |- ( ( ( 0 - N ) e. ZZ /\ ( 0 - M ) e. ZZ /\ K e. ZZ ) -> ( A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph <-> A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph ) ) |
|
| 11 | 6 8 9 10 | syl3an | |- ( ( N e. ZZ /\ M e. ZZ /\ K e. ZZ ) -> ( A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph <-> A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph ) ) |
| 12 | 11 | 3com12 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. x e. ( ( 0 - N ) ... ( 0 - M ) ) [. ( 0 - x ) / j ]. ph <-> A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph ) ) |
| 13 | ovex | |- ( K - k ) e. _V |
|
| 14 | oveq2 | |- ( x = ( K - k ) -> ( 0 - x ) = ( 0 - ( K - k ) ) ) |
|
| 15 | 14 | sbcco3gw | |- ( ( K - k ) e. _V -> ( [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph <-> [. ( 0 - ( K - k ) ) / j ]. ph ) ) |
| 16 | 13 15 | ax-mp | |- ( [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph <-> [. ( 0 - ( K - k ) ) / j ]. ph ) |
| 17 | 16 | ralbii | |- ( A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph <-> A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( 0 - ( K - k ) ) / j ]. ph ) |
| 18 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 19 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 20 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 21 | df-neg | |- -u M = ( 0 - M ) |
|
| 22 | 21 | oveq2i | |- ( K - -u M ) = ( K - ( 0 - M ) ) |
| 23 | subneg | |- ( ( K e. CC /\ M e. CC ) -> ( K - -u M ) = ( K + M ) ) |
|
| 24 | addcom | |- ( ( K e. CC /\ M e. CC ) -> ( K + M ) = ( M + K ) ) |
|
| 25 | 23 24 | eqtrd | |- ( ( K e. CC /\ M e. CC ) -> ( K - -u M ) = ( M + K ) ) |
| 26 | 22 25 | eqtr3id | |- ( ( K e. CC /\ M e. CC ) -> ( K - ( 0 - M ) ) = ( M + K ) ) |
| 27 | 26 | 3adant3 | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( K - ( 0 - M ) ) = ( M + K ) ) |
| 28 | df-neg | |- -u N = ( 0 - N ) |
|
| 29 | 28 | oveq2i | |- ( K - -u N ) = ( K - ( 0 - N ) ) |
| 30 | subneg | |- ( ( K e. CC /\ N e. CC ) -> ( K - -u N ) = ( K + N ) ) |
|
| 31 | addcom | |- ( ( K e. CC /\ N e. CC ) -> ( K + N ) = ( N + K ) ) |
|
| 32 | 30 31 | eqtrd | |- ( ( K e. CC /\ N e. CC ) -> ( K - -u N ) = ( N + K ) ) |
| 33 | 29 32 | eqtr3id | |- ( ( K e. CC /\ N e. CC ) -> ( K - ( 0 - N ) ) = ( N + K ) ) |
| 34 | 33 | 3adant2 | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( K - ( 0 - N ) ) = ( N + K ) ) |
| 35 | 27 34 | oveq12d | |- ( ( K e. CC /\ M e. CC /\ N e. CC ) -> ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) = ( ( M + K ) ... ( N + K ) ) ) |
| 36 | 35 | 3coml | |- ( ( M e. CC /\ N e. CC /\ K e. CC ) -> ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) = ( ( M + K ) ... ( N + K ) ) ) |
| 37 | 18 19 20 36 | syl3an | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) = ( ( M + K ) ... ( N + K ) ) ) |
| 38 | 37 | raleqdv | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( 0 - ( K - k ) ) / j ]. ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( 0 - ( K - k ) ) / j ]. ph ) ) |
| 39 | elfzelz | |- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. ZZ ) |
|
| 40 | 39 | zcnd | |- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. CC ) |
| 41 | df-neg | |- -u ( K - k ) = ( 0 - ( K - k ) ) |
|
| 42 | negsubdi2 | |- ( ( K e. CC /\ k e. CC ) -> -u ( K - k ) = ( k - K ) ) |
|
| 43 | 41 42 | eqtr3id | |- ( ( K e. CC /\ k e. CC ) -> ( 0 - ( K - k ) ) = ( k - K ) ) |
| 44 | 20 40 43 | syl2an | |- ( ( K e. ZZ /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( 0 - ( K - k ) ) = ( k - K ) ) |
| 45 | 44 | sbceq1d | |- ( ( K e. ZZ /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( [. ( 0 - ( K - k ) ) / j ]. ph <-> [. ( k - K ) / j ]. ph ) ) |
| 46 | 45 | ralbidva | |- ( K e. ZZ -> ( A. k e. ( ( M + K ) ... ( N + K ) ) [. ( 0 - ( K - k ) ) / j ]. ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 47 | 46 | 3ad2ant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( M + K ) ... ( N + K ) ) [. ( 0 - ( K - k ) ) / j ]. ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 48 | 38 47 | bitrd | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( 0 - ( K - k ) ) / j ]. ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 49 | 17 48 | bitrid | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( K - ( 0 - M ) ) ... ( K - ( 0 - N ) ) ) [. ( K - k ) / x ]. [. ( 0 - x ) / j ]. ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 50 | 4 12 49 | 3bitrd | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. k e. ( ( M + K ) ... ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |