This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzrevral | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) /\ k e. ( ( K - N ) ... ( K - M ) ) ) -> k e. ( ( K - N ) ... ( K - M ) ) ) |
|
| 2 | elfzelz | |- ( k e. ( ( K - N ) ... ( K - M ) ) -> k e. ZZ ) |
|
| 3 | fzrev | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ k e. ZZ ) ) -> ( k e. ( ( K - N ) ... ( K - M ) ) <-> ( K - k ) e. ( M ... N ) ) ) |
|
| 4 | 3 | anassrs | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) /\ k e. ZZ ) -> ( k e. ( ( K - N ) ... ( K - M ) ) <-> ( K - k ) e. ( M ... N ) ) ) |
| 5 | 2 4 | sylan2 | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) /\ k e. ( ( K - N ) ... ( K - M ) ) ) -> ( k e. ( ( K - N ) ... ( K - M ) ) <-> ( K - k ) e. ( M ... N ) ) ) |
| 6 | 1 5 | mpbid | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) /\ k e. ( ( K - N ) ... ( K - M ) ) ) -> ( K - k ) e. ( M ... N ) ) |
| 7 | rspsbc | |- ( ( K - k ) e. ( M ... N ) -> ( A. j e. ( M ... N ) ph -> [. ( K - k ) / j ]. ph ) ) |
|
| 8 | 6 7 | syl | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) /\ k e. ( ( K - N ) ... ( K - M ) ) ) -> ( A. j e. ( M ... N ) ph -> [. ( K - k ) / j ]. ph ) ) |
| 9 | 8 | ex3 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( k e. ( ( K - N ) ... ( K - M ) ) -> ( A. j e. ( M ... N ) ph -> [. ( K - k ) / j ]. ph ) ) ) |
| 10 | 9 | com23 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph -> ( k e. ( ( K - N ) ... ( K - M ) ) -> [. ( K - k ) / j ]. ph ) ) ) |
| 11 | 10 | ralrimdv | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph -> A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph ) ) |
| 12 | nfv | |- F/ j K e. ZZ |
|
| 13 | nfcv | |- F/_ j ( ( K - N ) ... ( K - M ) ) |
|
| 14 | nfsbc1v | |- F/ j [. ( K - k ) / j ]. ph |
|
| 15 | 13 14 | nfralw | |- F/ j A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph |
| 16 | fzrev2i | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> ( K - j ) e. ( ( K - N ) ... ( K - M ) ) ) |
|
| 17 | oveq2 | |- ( k = ( K - j ) -> ( K - k ) = ( K - ( K - j ) ) ) |
|
| 18 | 17 | sbceq1d | |- ( k = ( K - j ) -> ( [. ( K - k ) / j ]. ph <-> [. ( K - ( K - j ) ) / j ]. ph ) ) |
| 19 | 18 | rspcv | |- ( ( K - j ) e. ( ( K - N ) ... ( K - M ) ) -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> [. ( K - ( K - j ) ) / j ]. ph ) ) |
| 20 | 16 19 | syl | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> [. ( K - ( K - j ) ) / j ]. ph ) ) |
| 21 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 22 | elfzelz | |- ( j e. ( M ... N ) -> j e. ZZ ) |
|
| 23 | 22 | zcnd | |- ( j e. ( M ... N ) -> j e. CC ) |
| 24 | nncan | |- ( ( K e. CC /\ j e. CC ) -> ( K - ( K - j ) ) = j ) |
|
| 25 | 21 23 24 | syl2an | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> ( K - ( K - j ) ) = j ) |
| 26 | 25 | eqcomd | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> j = ( K - ( K - j ) ) ) |
| 27 | sbceq1a | |- ( j = ( K - ( K - j ) ) -> ( ph <-> [. ( K - ( K - j ) ) / j ]. ph ) ) |
|
| 28 | 26 27 | syl | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> ( ph <-> [. ( K - ( K - j ) ) / j ]. ph ) ) |
| 29 | 20 28 | sylibrd | |- ( ( K e. ZZ /\ j e. ( M ... N ) ) -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> ph ) ) |
| 30 | 29 | ex | |- ( K e. ZZ -> ( j e. ( M ... N ) -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> ph ) ) ) |
| 31 | 30 | com23 | |- ( K e. ZZ -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> ( j e. ( M ... N ) -> ph ) ) ) |
| 32 | 12 15 31 | ralrimd | |- ( K e. ZZ -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> A. j e. ( M ... N ) ph ) ) |
| 33 | 32 | 3ad2ant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph -> A. j e. ( M ... N ) ph ) ) |
| 34 | 11 33 | impbid | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... N ) ph <-> A. k e. ( ( K - N ) ... ( K - M ) ) [. ( K - k ) / j ]. ph ) ) |