This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two substitutions. Version of sbcco3g with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcco3gw.1 | |- ( x = A -> B = C ) |
|
| Assertion | sbcco3gw | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcco3gw.1 | |- ( x = A -> B = C ) |
|
| 2 | sbcnestgw | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. [_ A / x ]_ B / y ]. ph ) ) |
|
| 3 | elex | |- ( A e. V -> A e. _V ) |
|
| 4 | nfcvd | |- ( A e. _V -> F/_ x C ) |
|
| 5 | 4 1 | csbiegf | |- ( A e. _V -> [_ A / x ]_ B = C ) |
| 6 | dfsbcq | |- ( [_ A / x ]_ B = C -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) |
|
| 7 | 3 5 6 | 3syl | |- ( A e. V -> ( [. [_ A / x ]_ B / y ]. ph <-> [. C / y ]. ph ) ) |
| 8 | 2 7 | bitrd | |- ( A e. V -> ( [. A / x ]. [. B / y ]. ph <-> [. C / y ]. ph ) ) |