This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzossfzop1 | |- ( N e. NN0 -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 2 | id | |- ( N e. ZZ -> N e. ZZ ) |
|
| 3 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 4 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 5 | 4 | lep1d | |- ( N e. ZZ -> N <_ ( N + 1 ) ) |
| 6 | 2 3 5 | 3jca | |- ( N e. ZZ -> ( N e. ZZ /\ ( N + 1 ) e. ZZ /\ N <_ ( N + 1 ) ) ) |
| 7 | 1 6 | syl | |- ( N e. NN0 -> ( N e. ZZ /\ ( N + 1 ) e. ZZ /\ N <_ ( N + 1 ) ) ) |
| 8 | eluz2 | |- ( ( N + 1 ) e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ ( N + 1 ) e. ZZ /\ N <_ ( N + 1 ) ) ) |
|
| 9 | 7 8 | sylibr | |- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 10 | fzoss2 | |- ( ( N + 1 ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |
|
| 11 | 9 10 | syl | |- ( N e. NN0 -> ( 0 ..^ N ) C_ ( 0 ..^ ( N + 1 ) ) ) |