This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is a subset of a half-open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzossfzop1 | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 2 | id | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℤ ) | |
| 3 | peano2z | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 + 1 ) ∈ ℤ ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | 4 | lep1d | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ≤ ( 𝑁 + 1 ) ) |
| 6 | 2 3 5 | 3jca | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
| 7 | 1 6 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
| 8 | eluz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ∧ 𝑁 ≤ ( 𝑁 + 1 ) ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 10 | fzoss2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( 𝑁 + 1 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 ..^ 𝑁 ) ⊆ ( 0 ..^ ( 𝑁 + 1 ) ) ) |