This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is an element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzonn0p1p1 | |- ( I e. ( 0 ..^ N ) -> ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo0 | |- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
|
| 2 | peano2nn0 | |- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) e. NN0 ) |
| 4 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( N + 1 ) e. NN ) |
| 6 | simp3 | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> I < N ) |
|
| 7 | nn0re | |- ( I e. NN0 -> I e. RR ) |
|
| 8 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 9 | 1red | |- ( I < N -> 1 e. RR ) |
|
| 10 | ltadd1 | |- ( ( I e. RR /\ N e. RR /\ 1 e. RR ) -> ( I < N <-> ( I + 1 ) < ( N + 1 ) ) ) |
|
| 11 | 7 8 9 10 | syl3an | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I < N <-> ( I + 1 ) < ( N + 1 ) ) ) |
| 12 | 6 11 | mpbid | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) < ( N + 1 ) ) |
| 13 | elfzo0 | |- ( ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) <-> ( ( I + 1 ) e. NN0 /\ ( N + 1 ) e. NN /\ ( I + 1 ) < ( N + 1 ) ) ) |
|
| 14 | 3 5 12 13 | syl3anbrc | |- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |
| 15 | 1 14 | sylbi | |- ( I e. ( 0 ..^ N ) -> ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |