This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range can represent an ordered pair, analogous to fzopth . (Contributed by Alexander van der Vekens, 1-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoopth | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) <-> ( M = J /\ N = K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) |
|
| 2 | fzolb | |- ( M e. ( M ..^ N ) <-> ( M e. ZZ /\ N e. ZZ /\ M < N ) ) |
|
| 3 | 1 2 | sylibr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M e. ( M ..^ N ) ) |
| 4 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( M ..^ N ) = ( J ..^ K ) ) |
|
| 5 | 3 4 | eleqtrd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M e. ( J ..^ K ) ) |
| 6 | elfzouz | |- ( M e. ( J ..^ K ) -> M e. ( ZZ>= ` J ) ) |
|
| 7 | uzss | |- ( M e. ( ZZ>= ` J ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` J ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` M ) C_ ( ZZ>= ` J ) ) |
| 9 | 2 | biimpri | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> M e. ( M ..^ N ) ) |
| 10 | 9 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M e. ( M ..^ N ) ) |
| 11 | eleq2 | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( M e. ( M ..^ N ) <-> M e. ( J ..^ K ) ) ) |
|
| 12 | 11 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( M e. ( M ..^ N ) <-> M e. ( J ..^ K ) ) ) |
| 13 | 10 12 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M e. ( J ..^ K ) ) |
| 14 | elfzolt3b | |- ( M e. ( J ..^ K ) -> J e. ( J ..^ K ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> J e. ( J ..^ K ) ) |
| 16 | 15 4 | eleqtrrd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> J e. ( M ..^ N ) ) |
| 17 | elfzouz | |- ( J e. ( M ..^ N ) -> J e. ( ZZ>= ` M ) ) |
|
| 18 | uzss | |- ( J e. ( ZZ>= ` M ) -> ( ZZ>= ` J ) C_ ( ZZ>= ` M ) ) |
|
| 19 | 16 17 18 | 3syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` J ) C_ ( ZZ>= ` M ) ) |
| 20 | 8 19 | eqssd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` M ) = ( ZZ>= ` J ) ) |
| 21 | simpl1 | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M e. ZZ ) |
|
| 22 | uz11 | |- ( M e. ZZ -> ( ( ZZ>= ` M ) = ( ZZ>= ` J ) <-> M = J ) ) |
|
| 23 | 21 22 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ( ZZ>= ` M ) = ( ZZ>= ` J ) <-> M = J ) ) |
| 24 | 20 23 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> M = J ) |
| 25 | fzoend | |- ( J e. ( J ..^ K ) -> ( K - 1 ) e. ( J ..^ K ) ) |
|
| 26 | elfzoel2 | |- ( ( K - 1 ) e. ( J ..^ K ) -> K e. ZZ ) |
|
| 27 | eleq2 | |- ( ( J ..^ K ) = ( M ..^ N ) -> ( ( K - 1 ) e. ( J ..^ K ) <-> ( K - 1 ) e. ( M ..^ N ) ) ) |
|
| 28 | 27 | eqcoms | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( ( K - 1 ) e. ( J ..^ K ) <-> ( K - 1 ) e. ( M ..^ N ) ) ) |
| 29 | elfzo2 | |- ( ( K - 1 ) e. ( M ..^ N ) <-> ( ( K - 1 ) e. ( ZZ>= ` M ) /\ N e. ZZ /\ ( K - 1 ) < N ) ) |
|
| 30 | simpl | |- ( ( K e. ZZ /\ ( N e. ZZ /\ ( K - 1 ) < N ) ) -> K e. ZZ ) |
|
| 31 | simprl | |- ( ( K e. ZZ /\ ( N e. ZZ /\ ( K - 1 ) < N ) ) -> N e. ZZ ) |
|
| 32 | zlem1lt | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K <_ N <-> ( K - 1 ) < N ) ) |
|
| 33 | 32 | ancoms | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( K <_ N <-> ( K - 1 ) < N ) ) |
| 34 | 33 | biimprd | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( ( K - 1 ) < N -> K <_ N ) ) |
| 35 | 34 | impancom | |- ( ( N e. ZZ /\ ( K - 1 ) < N ) -> ( K e. ZZ -> K <_ N ) ) |
| 36 | 35 | impcom | |- ( ( K e. ZZ /\ ( N e. ZZ /\ ( K - 1 ) < N ) ) -> K <_ N ) |
| 37 | 30 31 36 | 3jca | |- ( ( K e. ZZ /\ ( N e. ZZ /\ ( K - 1 ) < N ) ) -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) |
| 38 | 37 | expcom | |- ( ( N e. ZZ /\ ( K - 1 ) < N ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) |
| 39 | 38 | 3adant1 | |- ( ( ( K - 1 ) e. ( ZZ>= ` M ) /\ N e. ZZ /\ ( K - 1 ) < N ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) |
| 40 | 39 | a1d | |- ( ( ( K - 1 ) e. ( ZZ>= ` M ) /\ N e. ZZ /\ ( K - 1 ) < N ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) |
| 41 | 29 40 | sylbi | |- ( ( K - 1 ) e. ( M ..^ N ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) |
| 42 | 28 41 | biimtrdi | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( ( K - 1 ) e. ( J ..^ K ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) ) |
| 43 | 42 | com23 | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( K - 1 ) e. ( J ..^ K ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) ) |
| 44 | 43 | impcom | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ( K - 1 ) e. ( J ..^ K ) -> ( K e. ZZ -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) |
| 45 | 44 | com13 | |- ( K e. ZZ -> ( ( K - 1 ) e. ( J ..^ K ) -> ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) ) |
| 46 | 26 45 | mpcom | |- ( ( K - 1 ) e. ( J ..^ K ) -> ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) |
| 47 | 25 46 | syl | |- ( J e. ( J ..^ K ) -> ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) ) |
| 48 | 15 47 | mpcom | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) |
| 49 | eluz2 | |- ( N e. ( ZZ>= ` K ) <-> ( K e. ZZ /\ N e. ZZ /\ K <_ N ) ) |
|
| 50 | 49 | biimpri | |- ( ( K e. ZZ /\ N e. ZZ /\ K <_ N ) -> N e. ( ZZ>= ` K ) ) |
| 51 | uzss | |- ( N e. ( ZZ>= ` K ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` K ) ) |
|
| 52 | 48 50 51 | 3syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` K ) ) |
| 53 | fzoend | |- ( M e. ( M ..^ N ) -> ( N - 1 ) e. ( M ..^ N ) ) |
|
| 54 | eleq2 | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( ( N - 1 ) e. ( M ..^ N ) <-> ( N - 1 ) e. ( J ..^ K ) ) ) |
|
| 55 | elfzo2 | |- ( ( N - 1 ) e. ( J ..^ K ) <-> ( ( N - 1 ) e. ( ZZ>= ` J ) /\ K e. ZZ /\ ( N - 1 ) < K ) ) |
|
| 56 | pm3.2 | |- ( N e. ZZ -> ( ( K e. ZZ /\ ( N - 1 ) < K ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
|
| 57 | 56 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( K e. ZZ /\ ( N - 1 ) < K ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
| 58 | 57 | com12 | |- ( ( K e. ZZ /\ ( N - 1 ) < K ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
| 59 | 58 | 3adant1 | |- ( ( ( N - 1 ) e. ( ZZ>= ` J ) /\ K e. ZZ /\ ( N - 1 ) < K ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
| 60 | 55 59 | sylbi | |- ( ( N - 1 ) e. ( J ..^ K ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
| 61 | 54 60 | biimtrdi | |- ( ( M ..^ N ) = ( J ..^ K ) -> ( ( N - 1 ) e. ( M ..^ N ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) ) |
| 62 | 61 | com3l | |- ( ( N - 1 ) e. ( M ..^ N ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) ) |
| 63 | 53 62 | syl | |- ( M e. ( M ..^ N ) -> ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) ) |
| 64 | 9 63 | mpcom | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) ) |
| 65 | 64 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) ) |
| 66 | simpl | |- ( ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) -> N e. ZZ ) |
|
| 67 | simprl | |- ( ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) -> K e. ZZ ) |
|
| 68 | zlem1lt | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N <_ K <-> ( N - 1 ) < K ) ) |
|
| 69 | 68 | ancoms | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( N <_ K <-> ( N - 1 ) < K ) ) |
| 70 | 69 | biimprd | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) < K -> N <_ K ) ) |
| 71 | 70 | impancom | |- ( ( K e. ZZ /\ ( N - 1 ) < K ) -> ( N e. ZZ -> N <_ K ) ) |
| 72 | 71 | impcom | |- ( ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) -> N <_ K ) |
| 73 | eluz2 | |- ( K e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ K e. ZZ /\ N <_ K ) ) |
|
| 74 | 66 67 72 73 | syl3anbrc | |- ( ( N e. ZZ /\ ( K e. ZZ /\ ( N - 1 ) < K ) ) -> K e. ( ZZ>= ` N ) ) |
| 75 | uzss | |- ( K e. ( ZZ>= ` N ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
|
| 76 | 65 74 75 | 3syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
| 77 | 52 76 | eqssd | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ZZ>= ` N ) = ( ZZ>= ` K ) ) |
| 78 | simpl2 | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> N e. ZZ ) |
|
| 79 | uz11 | |- ( N e. ZZ -> ( ( ZZ>= ` N ) = ( ZZ>= ` K ) <-> N = K ) ) |
|
| 80 | 78 79 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( ( ZZ>= ` N ) = ( ZZ>= ` K ) <-> N = K ) ) |
| 81 | 77 80 | mpbid | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> N = K ) |
| 82 | 24 81 | jca | |- ( ( ( M e. ZZ /\ N e. ZZ /\ M < N ) /\ ( M ..^ N ) = ( J ..^ K ) ) -> ( M = J /\ N = K ) ) |
| 83 | 82 | ex | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) -> ( M = J /\ N = K ) ) ) |
| 84 | oveq12 | |- ( ( M = J /\ N = K ) -> ( M ..^ N ) = ( J ..^ K ) ) |
|
| 85 | 83 84 | impbid1 | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ( ( M ..^ N ) = ( J ..^ K ) <-> ( M = J /\ N = K ) ) ) |