This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodisj | |- ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | |- ( ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/) <-> A. x ( x e. ( A ..^ B ) -> -. x e. ( B ..^ C ) ) ) |
|
| 2 | elfzolt2 | |- ( x e. ( A ..^ B ) -> x < B ) |
|
| 3 | elfzoelz | |- ( x e. ( A ..^ B ) -> x e. ZZ ) |
|
| 4 | 3 | zred | |- ( x e. ( A ..^ B ) -> x e. RR ) |
| 5 | elfzoel2 | |- ( x e. ( A ..^ B ) -> B e. ZZ ) |
|
| 6 | 5 | zred | |- ( x e. ( A ..^ B ) -> B e. RR ) |
| 7 | 4 6 | ltnled | |- ( x e. ( A ..^ B ) -> ( x < B <-> -. B <_ x ) ) |
| 8 | 2 7 | mpbid | |- ( x e. ( A ..^ B ) -> -. B <_ x ) |
| 9 | elfzole1 | |- ( x e. ( B ..^ C ) -> B <_ x ) |
|
| 10 | 8 9 | nsyl | |- ( x e. ( A ..^ B ) -> -. x e. ( B ..^ C ) ) |
| 11 | 1 10 | mpgbir | |- ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/) |