This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvun | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` A ) = ( ( F ` A ) u. ( G ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funun | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> Fun ( F u. G ) ) |
|
| 2 | funfv | |- ( Fun ( F u. G ) -> ( ( F u. G ) ` A ) = U. ( ( F u. G ) " { A } ) ) |
|
| 3 | 1 2 | syl | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` A ) = U. ( ( F u. G ) " { A } ) ) |
| 4 | imaundir | |- ( ( F u. G ) " { A } ) = ( ( F " { A } ) u. ( G " { A } ) ) |
|
| 5 | 4 | a1i | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) " { A } ) = ( ( F " { A } ) u. ( G " { A } ) ) ) |
| 6 | 5 | unieqd | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> U. ( ( F u. G ) " { A } ) = U. ( ( F " { A } ) u. ( G " { A } ) ) ) |
| 7 | uniun | |- U. ( ( F " { A } ) u. ( G " { A } ) ) = ( U. ( F " { A } ) u. U. ( G " { A } ) ) |
|
| 8 | funfv | |- ( Fun F -> ( F ` A ) = U. ( F " { A } ) ) |
|
| 9 | 8 | eqcomd | |- ( Fun F -> U. ( F " { A } ) = ( F ` A ) ) |
| 10 | funfv | |- ( Fun G -> ( G ` A ) = U. ( G " { A } ) ) |
|
| 11 | 10 | eqcomd | |- ( Fun G -> U. ( G " { A } ) = ( G ` A ) ) |
| 12 | 9 11 | anim12i | |- ( ( Fun F /\ Fun G ) -> ( U. ( F " { A } ) = ( F ` A ) /\ U. ( G " { A } ) = ( G ` A ) ) ) |
| 13 | 12 | adantr | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( U. ( F " { A } ) = ( F ` A ) /\ U. ( G " { A } ) = ( G ` A ) ) ) |
| 14 | uneq12 | |- ( ( U. ( F " { A } ) = ( F ` A ) /\ U. ( G " { A } ) = ( G ` A ) ) -> ( U. ( F " { A } ) u. U. ( G " { A } ) ) = ( ( F ` A ) u. ( G ` A ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( U. ( F " { A } ) u. U. ( G " { A } ) ) = ( ( F ` A ) u. ( G ` A ) ) ) |
| 16 | 7 15 | eqtrid | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> U. ( ( F " { A } ) u. ( G " { A } ) ) = ( ( F ` A ) u. ( G ` A ) ) ) |
| 17 | 3 6 16 | 3eqtrd | |- ( ( ( Fun F /\ Fun G ) /\ ( dom F i^i dom G ) = (/) ) -> ( ( F u. G ) ` A ) = ( ( F ` A ) u. ( G ` A ) ) ) |