This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfv | |- ( Fun F -> ( F ` A ) = U. ( F " { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( F ` A ) e. _V |
|
| 2 | 1 | unisn | |- U. { ( F ` A ) } = ( F ` A ) |
| 3 | eqid | |- dom F = dom F |
|
| 4 | df-fn | |- ( F Fn dom F <-> ( Fun F /\ dom F = dom F ) ) |
|
| 5 | 3 4 | mpbiran2 | |- ( F Fn dom F <-> Fun F ) |
| 6 | fnsnfv | |- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
|
| 7 | 5 6 | sylanbr | |- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
| 8 | 7 | unieqd | |- ( ( Fun F /\ A e. dom F ) -> U. { ( F ` A ) } = U. ( F " { A } ) ) |
| 9 | 2 8 | eqtr3id | |- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) = U. ( F " { A } ) ) |
| 10 | 9 | ex | |- ( Fun F -> ( A e. dom F -> ( F ` A ) = U. ( F " { A } ) ) ) |
| 11 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 12 | ndmima | |- ( -. A e. dom F -> ( F " { A } ) = (/) ) |
|
| 13 | 12 | unieqd | |- ( -. A e. dom F -> U. ( F " { A } ) = U. (/) ) |
| 14 | uni0 | |- U. (/) = (/) |
|
| 15 | 13 14 | eqtrdi | |- ( -. A e. dom F -> U. ( F " { A } ) = (/) ) |
| 16 | 11 15 | eqtr4d | |- ( -. A e. dom F -> ( F ` A ) = U. ( F " { A } ) ) |
| 17 | 10 16 | pm2.61d1 | |- ( Fun F -> ( F ` A ) = U. ( F " { A } ) ) |