This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994) (Proof shortened by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funss | |- ( A C_ B -> ( Fun B -> Fun A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relss | |- ( A C_ B -> ( Rel B -> Rel A ) ) |
|
| 2 | coss1 | |- ( A C_ B -> ( A o. `' A ) C_ ( B o. `' A ) ) |
|
| 3 | cnvss | |- ( A C_ B -> `' A C_ `' B ) |
|
| 4 | coss2 | |- ( `' A C_ `' B -> ( B o. `' A ) C_ ( B o. `' B ) ) |
|
| 5 | 3 4 | syl | |- ( A C_ B -> ( B o. `' A ) C_ ( B o. `' B ) ) |
| 6 | 2 5 | sstrd | |- ( A C_ B -> ( A o. `' A ) C_ ( B o. `' B ) ) |
| 7 | sstr2 | |- ( ( A o. `' A ) C_ ( B o. `' B ) -> ( ( B o. `' B ) C_ _I -> ( A o. `' A ) C_ _I ) ) |
|
| 8 | 6 7 | syl | |- ( A C_ B -> ( ( B o. `' B ) C_ _I -> ( A o. `' A ) C_ _I ) ) |
| 9 | 1 8 | anim12d | |- ( A C_ B -> ( ( Rel B /\ ( B o. `' B ) C_ _I ) -> ( Rel A /\ ( A o. `' A ) C_ _I ) ) ) |
| 10 | df-fun | |- ( Fun B <-> ( Rel B /\ ( B o. `' B ) C_ _I ) ) |
|
| 11 | df-fun | |- ( Fun A <-> ( Rel A /\ ( A o. `' A ) C_ _I ) ) |
|
| 12 | 9 10 11 | 3imtr4g | |- ( A C_ B -> ( Fun B -> Fun A ) ) |