This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function is an ordered pair then it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) (Proof shortened by AV, 15-Jul-2021) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funopsn.x | |- X e. _V |
|
| funopsn.y | |- Y e. _V |
||
| Assertion | funopsn | |- ( ( Fun F /\ F = <. X , Y >. ) -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopsn.x | |- X e. _V |
|
| 2 | funopsn.y | |- Y e. _V |
|
| 3 | funiun | |- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } ) |
|
| 4 | eqeq1 | |- ( F = <. X , Y >. -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> <. X , Y >. = U_ x e. dom F { <. x , ( F ` x ) >. } ) ) |
|
| 5 | eqcom | |- ( <. X , Y >. = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) |
|
| 6 | 4 5 | bitrdi | |- ( F = <. X , Y >. -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) ) |
| 7 | 6 | adantl | |- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) ) |
| 8 | 1 2 | opnzi | |- <. X , Y >. =/= (/) |
| 9 | neeq1 | |- ( <. X , Y >. = F -> ( <. X , Y >. =/= (/) <-> F =/= (/) ) ) |
|
| 10 | 9 | eqcoms | |- ( F = <. X , Y >. -> ( <. X , Y >. =/= (/) <-> F =/= (/) ) ) |
| 11 | funrel | |- ( Fun F -> Rel F ) |
|
| 12 | reldm0 | |- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
|
| 13 | 11 12 | syl | |- ( Fun F -> ( F = (/) <-> dom F = (/) ) ) |
| 14 | 13 | biimprd | |- ( Fun F -> ( dom F = (/) -> F = (/) ) ) |
| 15 | 14 | necon3d | |- ( Fun F -> ( F =/= (/) -> dom F =/= (/) ) ) |
| 16 | 15 | com12 | |- ( F =/= (/) -> ( Fun F -> dom F =/= (/) ) ) |
| 17 | 10 16 | biimtrdi | |- ( F = <. X , Y >. -> ( <. X , Y >. =/= (/) -> ( Fun F -> dom F =/= (/) ) ) ) |
| 18 | 17 | com3l | |- ( <. X , Y >. =/= (/) -> ( Fun F -> ( F = <. X , Y >. -> dom F =/= (/) ) ) ) |
| 19 | 18 | impd | |- ( <. X , Y >. =/= (/) -> ( ( Fun F /\ F = <. X , Y >. ) -> dom F =/= (/) ) ) |
| 20 | 8 19 | ax-mp | |- ( ( Fun F /\ F = <. X , Y >. ) -> dom F =/= (/) ) |
| 21 | fvex | |- ( F ` x ) e. _V |
|
| 22 | 21 1 2 | iunopeqop | |- ( dom F =/= (/) -> ( U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. -> E. a dom F = { a } ) ) |
| 23 | 20 22 | syl | |- ( ( Fun F /\ F = <. X , Y >. ) -> ( U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. -> E. a dom F = { a } ) ) |
| 24 | 7 23 | sylbid | |- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } -> E. a dom F = { a } ) ) |
| 25 | 24 | imp | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> E. a dom F = { a } ) |
| 26 | iuneq1 | |- ( dom F = { a } -> U_ x e. dom F { <. x , ( F ` x ) >. } = U_ x e. { a } { <. x , ( F ` x ) >. } ) |
|
| 27 | vex | |- a e. _V |
|
| 28 | id | |- ( x = a -> x = a ) |
|
| 29 | fveq2 | |- ( x = a -> ( F ` x ) = ( F ` a ) ) |
|
| 30 | 28 29 | opeq12d | |- ( x = a -> <. x , ( F ` x ) >. = <. a , ( F ` a ) >. ) |
| 31 | 30 | sneqd | |- ( x = a -> { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 32 | 27 31 | iunxsn | |- U_ x e. { a } { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } |
| 33 | 26 32 | eqtrdi | |- ( dom F = { a } -> U_ x e. dom F { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 34 | 33 | adantl | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> U_ x e. dom F { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 35 | 34 | eqeq2d | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> F = { <. a , ( F ` a ) >. } ) ) |
| 36 | eqeq1 | |- ( F = <. X , Y >. -> ( F = { <. a , ( F ` a ) >. } <-> <. X , Y >. = { <. a , ( F ` a ) >. } ) ) |
|
| 37 | 36 | adantl | |- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = { <. a , ( F ` a ) >. } <-> <. X , Y >. = { <. a , ( F ` a ) >. } ) ) |
| 38 | eqcom | |- ( <. X , Y >. = { <. a , ( F ` a ) >. } <-> { <. a , ( F ` a ) >. } = <. X , Y >. ) |
|
| 39 | fvex | |- ( F ` a ) e. _V |
|
| 40 | 27 39 | snopeqop | |- ( { <. a , ( F ` a ) >. } = <. X , Y >. <-> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 41 | 38 40 | sylbb | |- ( <. X , Y >. = { <. a , ( F ` a ) >. } -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 42 | 37 41 | biimtrdi | |- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = { <. a , ( F ` a ) >. } -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) ) |
| 43 | 42 | imp | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 44 | simpr3 | |- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> X = { a } ) |
|
| 45 | simp1 | |- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> a = ( F ` a ) ) |
|
| 46 | 45 | eqcomd | |- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( F ` a ) = a ) |
| 47 | 46 | opeq2d | |- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> <. a , ( F ` a ) >. = <. a , a >. ) |
| 48 | 47 | sneqd | |- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> { <. a , ( F ` a ) >. } = { <. a , a >. } ) |
| 49 | 48 | eqeq2d | |- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( F = { <. a , ( F ` a ) >. } <-> F = { <. a , a >. } ) ) |
| 50 | 49 | biimpac | |- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> F = { <. a , a >. } ) |
| 51 | 44 50 | jca | |- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> ( X = { a } /\ F = { <. a , a >. } ) ) |
| 52 | 51 | ex | |- ( F = { <. a , ( F ` a ) >. } -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 53 | 52 | adantl | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 54 | 53 | a1dd | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) ) |
| 55 | 43 54 | mpd | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 56 | 55 | impancom | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = { <. a , ( F ` a ) >. } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 57 | 35 56 | sylbid | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 58 | 57 | impancom | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 59 | 58 | eximdv | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> ( E. a dom F = { a } -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 60 | 25 59 | mpd | |- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) |
| 61 | 3 60 | mpidan | |- ( ( Fun F /\ F = <. X , Y >. ) -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) |