This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funopsn.x | |- X e. _V |
|
| funopsn.y | |- Y e. _V |
||
| Assertion | funop | |- ( Fun <. X , Y >. <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopsn.x | |- X e. _V |
|
| 2 | funopsn.y | |- Y e. _V |
|
| 3 | eqid | |- <. X , Y >. = <. X , Y >. |
|
| 4 | 1 2 | funopsn | |- ( ( Fun <. X , Y >. /\ <. X , Y >. = <. X , Y >. ) -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
| 5 | 3 4 | mpan2 | |- ( Fun <. X , Y >. -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
| 6 | vex | |- a e. _V |
|
| 7 | 6 6 | funsn | |- Fun { <. a , a >. } |
| 8 | funeq | |- ( <. X , Y >. = { <. a , a >. } -> ( Fun <. X , Y >. <-> Fun { <. a , a >. } ) ) |
|
| 9 | 7 8 | mpbiri | |- ( <. X , Y >. = { <. a , a >. } -> Fun <. X , Y >. ) |
| 10 | 9 | adantl | |- ( ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
| 11 | 10 | exlimiv | |- ( E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
| 12 | 5 11 | impbii | |- ( Fun <. X , Y >. <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |