This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of an ordered pair being equal to an indexed union of singletons of ordered pairs. (Contributed by AV, 20-Sep-2020) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunopeqop.b | |- B e. _V |
|
| iunopeqop.c | |- C e. _V |
||
| iunopeqop.d | |- D e. _V |
||
| Assertion | iunopeqop | |- ( A =/= (/) -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunopeqop.b | |- B e. _V |
|
| 2 | iunopeqop.c | |- C e. _V |
|
| 3 | iunopeqop.d | |- D e. _V |
|
| 4 | n0snor2el | |- ( A =/= (/) -> ( E. x e. A E. y e. A x =/= y \/ E. z A = { z } ) ) |
|
| 5 | nfiu1 | |- F/_ x U_ x e. A { <. x , B >. } |
|
| 6 | 5 | nfeq1 | |- F/ x U_ x e. A { <. x , B >. } = <. C , D >. |
| 7 | nfv | |- F/ x E. z A = { z } |
|
| 8 | 6 7 | nfim | |- F/ x ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) |
| 9 | ssiun2 | |- ( x e. A -> { <. x , B >. } C_ U_ x e. A { <. x , B >. } ) |
|
| 10 | nfcv | |- F/_ x y |
|
| 11 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 12 | 10 11 | nfop | |- F/_ x <. y , [_ y / x ]_ B >. |
| 13 | 12 | nfsn | |- F/_ x { <. y , [_ y / x ]_ B >. } |
| 14 | 13 5 | nfss | |- F/ x { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } |
| 15 | id | |- ( x = y -> x = y ) |
|
| 16 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 17 | 15 16 | opeq12d | |- ( x = y -> <. x , B >. = <. y , [_ y / x ]_ B >. ) |
| 18 | 17 | sneqd | |- ( x = y -> { <. x , B >. } = { <. y , [_ y / x ]_ B >. } ) |
| 19 | 18 | sseq1d | |- ( x = y -> ( { <. x , B >. } C_ U_ x e. A { <. x , B >. } <-> { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } ) ) |
| 20 | 10 14 19 9 | vtoclgaf | |- ( y e. A -> { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } ) |
| 21 | 9 20 | anim12i | |- ( ( x e. A /\ y e. A ) -> ( { <. x , B >. } C_ U_ x e. A { <. x , B >. } /\ { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } ) ) |
| 22 | unss | |- ( ( { <. x , B >. } C_ U_ x e. A { <. x , B >. } /\ { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } ) <-> ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ U_ x e. A { <. x , B >. } ) |
|
| 23 | sseq2 | |- ( U_ x e. A { <. x , B >. } = <. C , D >. -> ( ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ U_ x e. A { <. x , B >. } <-> ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ <. C , D >. ) ) |
|
| 24 | df-pr | |- { <. x , B >. , <. y , [_ y / x ]_ B >. } = ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) |
|
| 25 | 24 | eqcomi | |- ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) = { <. x , B >. , <. y , [_ y / x ]_ B >. } |
| 26 | 25 | sseq1i | |- ( ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ <. C , D >. <-> { <. x , B >. , <. y , [_ y / x ]_ B >. } C_ <. C , D >. ) |
| 27 | vex | |- x e. _V |
|
| 28 | vex | |- y e. _V |
|
| 29 | 1 | csbex | |- [_ y / x ]_ B e. _V |
| 30 | 27 1 28 29 2 3 | propssopi | |- ( { <. x , B >. , <. y , [_ y / x ]_ B >. } C_ <. C , D >. -> x = y ) |
| 31 | eqneqall | |- ( x = y -> ( x =/= y -> ( ( x e. A /\ y e. A ) -> E. z A = { z } ) ) ) |
|
| 32 | 30 31 | syl | |- ( { <. x , B >. , <. y , [_ y / x ]_ B >. } C_ <. C , D >. -> ( x =/= y -> ( ( x e. A /\ y e. A ) -> E. z A = { z } ) ) ) |
| 33 | 26 32 | sylbi | |- ( ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ <. C , D >. -> ( x =/= y -> ( ( x e. A /\ y e. A ) -> E. z A = { z } ) ) ) |
| 34 | 23 33 | biimtrdi | |- ( U_ x e. A { <. x , B >. } = <. C , D >. -> ( ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ U_ x e. A { <. x , B >. } -> ( x =/= y -> ( ( x e. A /\ y e. A ) -> E. z A = { z } ) ) ) ) |
| 35 | 34 | com14 | |- ( ( x e. A /\ y e. A ) -> ( ( { <. x , B >. } u. { <. y , [_ y / x ]_ B >. } ) C_ U_ x e. A { <. x , B >. } -> ( x =/= y -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) ) ) |
| 36 | 22 35 | biimtrid | |- ( ( x e. A /\ y e. A ) -> ( ( { <. x , B >. } C_ U_ x e. A { <. x , B >. } /\ { <. y , [_ y / x ]_ B >. } C_ U_ x e. A { <. x , B >. } ) -> ( x =/= y -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) ) ) |
| 37 | 21 36 | mpd | |- ( ( x e. A /\ y e. A ) -> ( x =/= y -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) ) |
| 38 | 37 | rexlimdva | |- ( x e. A -> ( E. y e. A x =/= y -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) ) |
| 39 | 8 38 | rexlimi | |- ( E. x e. A E. y e. A x =/= y -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) |
| 40 | ax-1 | |- ( E. z A = { z } -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) |
|
| 41 | 39 40 | jaoi | |- ( ( E. x e. A E. y e. A x =/= y \/ E. z A = { z } ) -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) |
| 42 | 4 41 | syl | |- ( A =/= (/) -> ( U_ x e. A { <. x , B >. } = <. C , D >. -> E. z A = { z } ) ) |