This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of onto functions. Generalisation of foco . (Contributed by AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | focofo | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ( F o. G ) : ( `' G " A ) -onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 2 | fcof | |- ( ( F : A --> B /\ Fun G ) -> ( F o. G ) : ( `' G " A ) --> B ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -onto-> B /\ Fun G ) -> ( F o. G ) : ( `' G " A ) --> B ) |
| 4 | 3 | 3adant3 | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ( F o. G ) : ( `' G " A ) --> B ) |
| 5 | rnco | |- ran ( F o. G ) = ran ( F |` ran G ) |
|
| 6 | 1 | freld | |- ( F : A -onto-> B -> Rel F ) |
| 7 | 6 | 3ad2ant1 | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> Rel F ) |
| 8 | fdm | |- ( F : A --> B -> dom F = A ) |
|
| 9 | 8 | eqcomd | |- ( F : A --> B -> A = dom F ) |
| 10 | 1 9 | syl | |- ( F : A -onto-> B -> A = dom F ) |
| 11 | 10 | sseq1d | |- ( F : A -onto-> B -> ( A C_ ran G <-> dom F C_ ran G ) ) |
| 12 | 11 | biimpa | |- ( ( F : A -onto-> B /\ A C_ ran G ) -> dom F C_ ran G ) |
| 13 | relssres | |- ( ( Rel F /\ dom F C_ ran G ) -> ( F |` ran G ) = F ) |
|
| 14 | 13 | rneqd | |- ( ( Rel F /\ dom F C_ ran G ) -> ran ( F |` ran G ) = ran F ) |
| 15 | 7 12 14 | 3imp3i2an | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ran ( F |` ran G ) = ran F ) |
| 16 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 17 | 16 | 3ad2ant1 | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ran F = B ) |
| 18 | 15 17 | eqtrd | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ran ( F |` ran G ) = B ) |
| 19 | 5 18 | eqtrid | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ran ( F o. G ) = B ) |
| 20 | dffo2 | |- ( ( F o. G ) : ( `' G " A ) -onto-> B <-> ( ( F o. G ) : ( `' G " A ) --> B /\ ran ( F o. G ) = B ) ) |
|
| 21 | 4 19 20 | sylanbrc | |- ( ( F : A -onto-> B /\ Fun G /\ A C_ ran G ) -> ( F o. G ) : ( `' G " A ) -onto-> B ) |