This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcores.f | |- ( ph -> F : A --> B ) |
|
| fcores.e | |- E = ( ran F i^i C ) |
||
| fcores.p | |- P = ( `' F " C ) |
||
| fcores.x | |- X = ( F |` P ) |
||
| fcores.g | |- ( ph -> G : C --> D ) |
||
| fcores.y | |- Y = ( G |` E ) |
||
| fcoresfo.s | |- ( ph -> ( G o. F ) : P -onto-> D ) |
||
| Assertion | fcoresfo | |- ( ph -> Y : E -onto-> D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | |- ( ph -> F : A --> B ) |
|
| 2 | fcores.e | |- E = ( ran F i^i C ) |
|
| 3 | fcores.p | |- P = ( `' F " C ) |
|
| 4 | fcores.x | |- X = ( F |` P ) |
|
| 5 | fcores.g | |- ( ph -> G : C --> D ) |
|
| 6 | fcores.y | |- Y = ( G |` E ) |
|
| 7 | fcoresfo.s | |- ( ph -> ( G o. F ) : P -onto-> D ) |
|
| 8 | 2 | a1i | |- ( ph -> E = ( ran F i^i C ) ) |
| 9 | inss2 | |- ( ran F i^i C ) C_ C |
|
| 10 | 8 9 | eqsstrdi | |- ( ph -> E C_ C ) |
| 11 | 5 10 | fssresd | |- ( ph -> ( G |` E ) : E --> D ) |
| 12 | 6 | feq1i | |- ( Y : E --> D <-> ( G |` E ) : E --> D ) |
| 13 | 11 12 | sylibr | |- ( ph -> Y : E --> D ) |
| 14 | 1 2 3 4 | fcoreslem3 | |- ( ph -> X : P -onto-> E ) |
| 15 | fof | |- ( X : P -onto-> E -> X : P --> E ) |
|
| 16 | 14 15 | syl | |- ( ph -> X : P --> E ) |
| 17 | 1 2 3 4 5 6 | fcores | |- ( ph -> ( G o. F ) = ( Y o. X ) ) |
| 18 | 17 | eqcomd | |- ( ph -> ( Y o. X ) = ( G o. F ) ) |
| 19 | foeq1 | |- ( ( Y o. X ) = ( G o. F ) -> ( ( Y o. X ) : P -onto-> D <-> ( G o. F ) : P -onto-> D ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( ( Y o. X ) : P -onto-> D <-> ( G o. F ) : P -onto-> D ) ) |
| 21 | 7 20 | mpbird | |- ( ph -> ( Y o. X ) : P -onto-> D ) |
| 22 | foco2 | |- ( ( Y : E --> D /\ X : P --> E /\ ( Y o. X ) : P -onto-> D ) -> Y : E -onto-> D ) |
|
| 23 | 13 16 21 22 | syl3anc | |- ( ph -> Y : E -onto-> D ) |