This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain of a function G equals the range of a function F , then the composition ( G o. F ) is surjective iff G is surjective. (Contributed by GL and AV, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnfocofob | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> ( ( G o. F ) : A -onto-> C <-> G : B -onto-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 2 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> dom F = A ) |
| 4 | 1 3 | eqtr2id | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> A = ( `' F " ran F ) ) |
| 5 | imaeq2 | |- ( ran F = B -> ( `' F " ran F ) = ( `' F " B ) ) |
|
| 6 | 5 | 3ad2ant3 | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> ( `' F " ran F ) = ( `' F " B ) ) |
| 7 | 4 6 | eqtrd | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> A = ( `' F " B ) ) |
| 8 | foeq2 | |- ( A = ( `' F " B ) -> ( ( G o. F ) : A -onto-> C <-> ( G o. F ) : ( `' F " B ) -onto-> C ) ) |
|
| 9 | 7 8 | syl | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> ( ( G o. F ) : A -onto-> C <-> ( G o. F ) : ( `' F " B ) -onto-> C ) ) |
| 10 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 11 | id | |- ( G : B --> C -> G : B --> C ) |
|
| 12 | eqimss2 | |- ( ran F = B -> B C_ ran F ) |
|
| 13 | funfocofob | |- ( ( Fun F /\ G : B --> C /\ B C_ ran F ) -> ( ( G o. F ) : ( `' F " B ) -onto-> C <-> G : B -onto-> C ) ) |
|
| 14 | 10 11 12 13 | syl3an | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> ( ( G o. F ) : ( `' F " B ) -onto-> C <-> G : B -onto-> C ) ) |
| 15 | 9 14 | bitrd | |- ( ( F Fn A /\ G : B --> C /\ ran F = B ) -> ( ( G o. F ) : A -onto-> C <-> G : B -onto-> C ) ) |