This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrclem3.e | |- E = ( ExtStrCat ` U ) |
||
| funcsetcestrclem3.b | |- B = ( Base ` E ) |
||
| Assertion | funcsetcestrclem3 | |- ( ph -> F : C --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrclem3.e | |- E = ( ExtStrCat ` U ) |
|
| 7 | funcsetcestrclem3.b | |- B = ( Base ` E ) |
|
| 8 | 1 2 4 5 | setc1strwun | |- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. U ) |
| 9 | 6 4 | estrcbas | |- ( ph -> U = ( Base ` E ) ) |
| 10 | 9 | eqcomd | |- ( ph -> ( Base ` E ) = U ) |
| 11 | 10 | adantr | |- ( ( ph /\ x e. C ) -> ( Base ` E ) = U ) |
| 12 | 8 11 | eleqtrrd | |- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. ( Base ` E ) ) |
| 13 | 12 7 | eleqtrrdi | |- ( ( ph /\ x e. C ) -> { <. ( Base ` ndx ) , x >. } e. B ) |
| 14 | 3 13 | fmpt3d | |- ( ph -> F : C --> B ) |