This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullthinc.b | |- B = ( Base ` C ) |
|
| fullthinc.j | |- J = ( Hom ` D ) |
||
| fullthinc.h | |- H = ( Hom ` C ) |
||
| fullthinc.d | |- ( ph -> D e. ThinCat ) |
||
| fullthinc2.f | |- ( ph -> F ( C Full D ) G ) |
||
| fullthinc2.x | |- ( ph -> X e. B ) |
||
| fullthinc2.y | |- ( ph -> Y e. B ) |
||
| Assertion | fullthinc2 | |- ( ph -> ( ( X H Y ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullthinc.b | |- B = ( Base ` C ) |
|
| 2 | fullthinc.j | |- J = ( Hom ` D ) |
|
| 3 | fullthinc.h | |- H = ( Hom ` C ) |
|
| 4 | fullthinc.d | |- ( ph -> D e. ThinCat ) |
|
| 5 | fullthinc2.f | |- ( ph -> F ( C Full D ) G ) |
|
| 6 | fullthinc2.x | |- ( ph -> X e. B ) |
|
| 7 | fullthinc2.y | |- ( ph -> Y e. B ) |
|
| 8 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 9 | 8 | ssbri | |- ( F ( C Full D ) G -> F ( C Func D ) G ) |
| 10 | 5 9 | syl | |- ( ph -> F ( C Func D ) G ) |
| 11 | 1 2 3 4 10 | fullthinc | |- ( ph -> ( F ( C Full D ) G <-> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) ) |
| 12 | 5 11 | mpbid | |- ( ph -> A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) |
| 13 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
|
| 14 | 13 | eqeq1d | |- ( ( x = X /\ y = Y ) -> ( ( x H y ) = (/) <-> ( X H Y ) = (/) ) ) |
| 15 | simpl | |- ( ( x = X /\ y = Y ) -> x = X ) |
|
| 16 | 15 | fveq2d | |- ( ( x = X /\ y = Y ) -> ( F ` x ) = ( F ` X ) ) |
| 17 | simpr | |- ( ( x = X /\ y = Y ) -> y = Y ) |
|
| 18 | 17 | fveq2d | |- ( ( x = X /\ y = Y ) -> ( F ` y ) = ( F ` Y ) ) |
| 19 | 16 18 | oveq12d | |- ( ( x = X /\ y = Y ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 20 | 19 | eqeq1d | |- ( ( x = X /\ y = Y ) -> ( ( ( F ` x ) J ( F ` y ) ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
| 21 | 14 20 | imbi12d | |- ( ( x = X /\ y = Y ) -> ( ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) <-> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) ) |
| 22 | 21 | rspc2gv | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) ) |
| 23 | 22 | imp | |- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( x H y ) = (/) -> ( ( F ` x ) J ( F ` y ) ) = (/) ) ) -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
| 24 | 6 7 12 23 | syl21anc | |- ( ph -> ( ( X H Y ) = (/) -> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
| 25 | 1 3 2 10 6 7 | funcf2 | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
| 26 | 25 | f002 | |- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
| 27 | 24 26 | impbid | |- ( ph -> ( ( X H Y ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |