This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function returning all the full functors from a category C to a category D . A full functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are surjections. Definition 3.27(3) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-full | |- Full = ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cful | |- Full |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vd | |- d |
|
| 4 | vf | |- f |
|
| 5 | vg | |- g |
|
| 6 | 4 | cv | |- f |
| 7 | 1 | cv | |- c |
| 8 | cfunc | |- Func |
|
| 9 | 3 | cv | |- d |
| 10 | 7 9 8 | co | |- ( c Func d ) |
| 11 | 5 | cv | |- g |
| 12 | 6 11 10 | wbr | |- f ( c Func d ) g |
| 13 | vx | |- x |
|
| 14 | cbs | |- Base |
|
| 15 | 7 14 | cfv | |- ( Base ` c ) |
| 16 | vy | |- y |
|
| 17 | 13 | cv | |- x |
| 18 | 16 | cv | |- y |
| 19 | 17 18 11 | co | |- ( x g y ) |
| 20 | 19 | crn | |- ran ( x g y ) |
| 21 | 17 6 | cfv | |- ( f ` x ) |
| 22 | chom | |- Hom |
|
| 23 | 9 22 | cfv | |- ( Hom ` d ) |
| 24 | 18 6 | cfv | |- ( f ` y ) |
| 25 | 21 24 23 | co | |- ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) |
| 26 | 20 25 | wceq | |- ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) |
| 27 | 26 16 15 | wral | |- A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) |
| 28 | 27 13 15 | wral | |- A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) |
| 29 | 12 28 | wa | |- ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) |
| 30 | 29 4 5 | copab | |- { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } |
| 31 | 1 3 2 2 30 | cmpo | |- ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |
| 32 | 0 31 | wceq | |- Full = ( c e. Cat , d e. Cat |-> { <. f , g >. | ( f ( c Func d ) g /\ A. x e. ( Base ` c ) A. y e. ( Base ` c ) ran ( x g y ) = ( ( f ` x ) ( Hom ` d ) ( f ` y ) ) ) } ) |