This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functor category is a category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fuccat.q | |- Q = ( C FuncCat D ) |
|
| fuccat.r | |- ( ph -> C e. Cat ) |
||
| fuccat.s | |- ( ph -> D e. Cat ) |
||
| fuccatid.1 | |- .1. = ( Id ` D ) |
||
| Assertion | fuccatid | |- ( ph -> ( Q e. Cat /\ ( Id ` Q ) = ( f e. ( C Func D ) |-> ( .1. o. ( 1st ` f ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuccat.q | |- Q = ( C FuncCat D ) |
|
| 2 | fuccat.r | |- ( ph -> C e. Cat ) |
|
| 3 | fuccat.s | |- ( ph -> D e. Cat ) |
|
| 4 | fuccatid.1 | |- .1. = ( Id ` D ) |
|
| 5 | 1 | fucbas | |- ( C Func D ) = ( Base ` Q ) |
| 6 | 5 | a1i | |- ( ph -> ( C Func D ) = ( Base ` Q ) ) |
| 7 | eqid | |- ( C Nat D ) = ( C Nat D ) |
|
| 8 | 1 7 | fuchom | |- ( C Nat D ) = ( Hom ` Q ) |
| 9 | 8 | a1i | |- ( ph -> ( C Nat D ) = ( Hom ` Q ) ) |
| 10 | eqidd | |- ( ph -> ( comp ` Q ) = ( comp ` Q ) ) |
|
| 11 | 1 | ovexi | |- Q e. _V |
| 12 | 11 | a1i | |- ( ph -> Q e. _V ) |
| 13 | biid | |- ( ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) <-> ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) |
|
| 14 | simpr | |- ( ( ph /\ f e. ( C Func D ) ) -> f e. ( C Func D ) ) |
|
| 15 | 1 7 4 14 | fucidcl | |- ( ( ph /\ f e. ( C Func D ) ) -> ( .1. o. ( 1st ` f ) ) e. ( f ( C Nat D ) f ) ) |
| 16 | eqid | |- ( comp ` Q ) = ( comp ` Q ) |
|
| 17 | simpr31 | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> r e. ( e ( C Nat D ) f ) ) |
|
| 18 | 1 7 16 4 17 | fuclid | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> ( ( .1. o. ( 1st ` f ) ) ( <. e , f >. ( comp ` Q ) f ) r ) = r ) |
| 19 | simpr32 | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> s e. ( f ( C Nat D ) g ) ) |
|
| 20 | 1 7 16 4 19 | fucrid | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> ( s ( <. f , f >. ( comp ` Q ) g ) ( .1. o. ( 1st ` f ) ) ) = s ) |
| 21 | 1 7 16 17 19 | fuccocl | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> ( s ( <. e , f >. ( comp ` Q ) g ) r ) e. ( e ( C Nat D ) g ) ) |
| 22 | simpr33 | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> t e. ( g ( C Nat D ) h ) ) |
|
| 23 | 1 7 16 17 19 22 | fucass | |- ( ( ph /\ ( ( e e. ( C Func D ) /\ f e. ( C Func D ) ) /\ ( g e. ( C Func D ) /\ h e. ( C Func D ) ) /\ ( r e. ( e ( C Nat D ) f ) /\ s e. ( f ( C Nat D ) g ) /\ t e. ( g ( C Nat D ) h ) ) ) ) -> ( ( t ( <. f , g >. ( comp ` Q ) h ) s ) ( <. e , f >. ( comp ` Q ) h ) r ) = ( t ( <. e , g >. ( comp ` Q ) h ) ( s ( <. e , f >. ( comp ` Q ) g ) r ) ) ) |
| 24 | 6 9 10 12 13 15 18 20 21 23 | iscatd2 | |- ( ph -> ( Q e. Cat /\ ( Id ` Q ) = ( f e. ( C Func D ) |-> ( .1. o. ( 1st ` f ) ) ) ) ) |