This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019) (Proof shortened by AV, 6-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppmapnn0fz | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> E. m e. NN0 ( F supp Z ) C_ ( 0 ... m ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmapnn0ub | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) ) |
|
| 2 | simpllr | |- ( ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) /\ A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) -> Z e. V ) |
|
| 3 | simplll | |- ( ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) /\ A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) -> F e. ( R ^m NN0 ) ) |
|
| 4 | simplr | |- ( ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) /\ A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) -> m e. NN0 ) |
|
| 5 | simpr | |- ( ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) /\ A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) -> A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) |
|
| 6 | 2 3 4 5 | suppssfz | |- ( ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) /\ A. x e. NN0 ( m < x -> ( F ` x ) = Z ) ) -> ( F supp Z ) C_ ( 0 ... m ) ) |
| 7 | 6 | ex | |- ( ( ( F e. ( R ^m NN0 ) /\ Z e. V ) /\ m e. NN0 ) -> ( A. x e. NN0 ( m < x -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( 0 ... m ) ) ) |
| 8 | 7 | reximdva | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( E. m e. NN0 A. x e. NN0 ( m < x -> ( F ` x ) = Z ) -> E. m e. NN0 ( F supp Z ) C_ ( 0 ... m ) ) ) |
| 9 | 1 8 | syld | |- ( ( F e. ( R ^m NN0 ) /\ Z e. V ) -> ( F finSupp Z -> E. m e. NN0 ( F supp Z ) C_ ( 0 ... m ) ) ) |