This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a function over the nonnegative integers to have a support contained in a finite set of sequential integers. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssfz.z | |- ( ph -> Z e. V ) |
|
| suppssfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
||
| suppssfz.s | |- ( ph -> S e. NN0 ) |
||
| suppssfz.b | |- ( ph -> A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) |
||
| Assertion | suppssfz | |- ( ph -> ( F supp Z ) C_ ( 0 ... S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssfz.z | |- ( ph -> Z e. V ) |
|
| 2 | suppssfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
|
| 3 | suppssfz.s | |- ( ph -> S e. NN0 ) |
|
| 4 | suppssfz.b | |- ( ph -> A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) |
|
| 5 | elmapfn | |- ( F e. ( B ^m NN0 ) -> F Fn NN0 ) |
|
| 6 | 2 5 | syl | |- ( ph -> F Fn NN0 ) |
| 7 | nn0ex | |- NN0 e. _V |
|
| 8 | 7 | a1i | |- ( ph -> NN0 e. _V ) |
| 9 | 6 8 1 | 3jca | |- ( ph -> ( F Fn NN0 /\ NN0 e. _V /\ Z e. V ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( F Fn NN0 /\ NN0 e. _V /\ Z e. V ) ) |
| 11 | elsuppfn | |- ( ( F Fn NN0 /\ NN0 e. _V /\ Z e. V ) -> ( n e. ( F supp Z ) <-> ( n e. NN0 /\ ( F ` n ) =/= Z ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( n e. ( F supp Z ) <-> ( n e. NN0 /\ ( F ` n ) =/= Z ) ) ) |
| 13 | breq2 | |- ( x = n -> ( S < x <-> S < n ) ) |
|
| 14 | fveqeq2 | |- ( x = n -> ( ( F ` x ) = Z <-> ( F ` n ) = Z ) ) |
|
| 15 | 13 14 | imbi12d | |- ( x = n -> ( ( S < x -> ( F ` x ) = Z ) <-> ( S < n -> ( F ` n ) = Z ) ) ) |
| 16 | 15 | rspcva | |- ( ( n e. NN0 /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( S < n -> ( F ` n ) = Z ) ) |
| 17 | simplr | |- ( ( ( ph /\ n e. NN0 ) /\ -. S < n ) -> n e. NN0 ) |
|
| 18 | 3 | adantr | |- ( ( ph /\ n e. NN0 ) -> S e. NN0 ) |
| 19 | 18 | adantr | |- ( ( ( ph /\ n e. NN0 ) /\ -. S < n ) -> S e. NN0 ) |
| 20 | nn0re | |- ( n e. NN0 -> n e. RR ) |
|
| 21 | nn0re | |- ( S e. NN0 -> S e. RR ) |
|
| 22 | 3 21 | syl | |- ( ph -> S e. RR ) |
| 23 | lenlt | |- ( ( n e. RR /\ S e. RR ) -> ( n <_ S <-> -. S < n ) ) |
|
| 24 | 20 22 23 | syl2anr | |- ( ( ph /\ n e. NN0 ) -> ( n <_ S <-> -. S < n ) ) |
| 25 | 24 | biimpar | |- ( ( ( ph /\ n e. NN0 ) /\ -. S < n ) -> n <_ S ) |
| 26 | elfz2nn0 | |- ( n e. ( 0 ... S ) <-> ( n e. NN0 /\ S e. NN0 /\ n <_ S ) ) |
|
| 27 | 17 19 25 26 | syl3anbrc | |- ( ( ( ph /\ n e. NN0 ) /\ -. S < n ) -> n e. ( 0 ... S ) ) |
| 28 | 27 | a1d | |- ( ( ( ph /\ n e. NN0 ) /\ -. S < n ) -> ( ( F ` n ) =/= Z -> n e. ( 0 ... S ) ) ) |
| 29 | 28 | ex | |- ( ( ph /\ n e. NN0 ) -> ( -. S < n -> ( ( F ` n ) =/= Z -> n e. ( 0 ... S ) ) ) ) |
| 30 | eqneqall | |- ( ( F ` n ) = Z -> ( ( F ` n ) =/= Z -> n e. ( 0 ... S ) ) ) |
|
| 31 | 30 | a1i | |- ( ( ph /\ n e. NN0 ) -> ( ( F ` n ) = Z -> ( ( F ` n ) =/= Z -> n e. ( 0 ... S ) ) ) ) |
| 32 | 29 31 | jad | |- ( ( ph /\ n e. NN0 ) -> ( ( S < n -> ( F ` n ) = Z ) -> ( ( F ` n ) =/= Z -> n e. ( 0 ... S ) ) ) ) |
| 33 | 32 | com23 | |- ( ( ph /\ n e. NN0 ) -> ( ( F ` n ) =/= Z -> ( ( S < n -> ( F ` n ) = Z ) -> n e. ( 0 ... S ) ) ) ) |
| 34 | 33 | ex | |- ( ph -> ( n e. NN0 -> ( ( F ` n ) =/= Z -> ( ( S < n -> ( F ` n ) = Z ) -> n e. ( 0 ... S ) ) ) ) ) |
| 35 | 34 | com14 | |- ( ( S < n -> ( F ` n ) = Z ) -> ( n e. NN0 -> ( ( F ` n ) =/= Z -> ( ph -> n e. ( 0 ... S ) ) ) ) ) |
| 36 | 16 35 | syl | |- ( ( n e. NN0 /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( n e. NN0 -> ( ( F ` n ) =/= Z -> ( ph -> n e. ( 0 ... S ) ) ) ) ) |
| 37 | 36 | ex | |- ( n e. NN0 -> ( A. x e. NN0 ( S < x -> ( F ` x ) = Z ) -> ( n e. NN0 -> ( ( F ` n ) =/= Z -> ( ph -> n e. ( 0 ... S ) ) ) ) ) ) |
| 38 | 37 | pm2.43a | |- ( n e. NN0 -> ( A. x e. NN0 ( S < x -> ( F ` x ) = Z ) -> ( ( F ` n ) =/= Z -> ( ph -> n e. ( 0 ... S ) ) ) ) ) |
| 39 | 38 | com23 | |- ( n e. NN0 -> ( ( F ` n ) =/= Z -> ( A. x e. NN0 ( S < x -> ( F ` x ) = Z ) -> ( ph -> n e. ( 0 ... S ) ) ) ) ) |
| 40 | 39 | imp | |- ( ( n e. NN0 /\ ( F ` n ) =/= Z ) -> ( A. x e. NN0 ( S < x -> ( F ` x ) = Z ) -> ( ph -> n e. ( 0 ... S ) ) ) ) |
| 41 | 40 | com13 | |- ( ph -> ( A. x e. NN0 ( S < x -> ( F ` x ) = Z ) -> ( ( n e. NN0 /\ ( F ` n ) =/= Z ) -> n e. ( 0 ... S ) ) ) ) |
| 42 | 41 | imp | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( ( n e. NN0 /\ ( F ` n ) =/= Z ) -> n e. ( 0 ... S ) ) ) |
| 43 | 12 42 | sylbid | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( n e. ( F supp Z ) -> n e. ( 0 ... S ) ) ) |
| 44 | 43 | ssrdv | |- ( ( ph /\ A. x e. NN0 ( S < x -> ( F ` x ) = Z ) ) -> ( F supp Z ) C_ ( 0 ... S ) ) |
| 45 | 4 44 | mpdan | |- ( ph -> ( F supp Z ) C_ ( 0 ... S ) ) |