This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate the nested sum of the product C ( j ) x. D ( k ) . (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsum2mul.1 | |- ( ph -> A e. Fin ) |
|
| fsum2mul.2 | |- ( ph -> B e. Fin ) |
||
| fsum2mul.3 | |- ( ( ph /\ j e. A ) -> C e. CC ) |
||
| fsum2mul.4 | |- ( ( ph /\ k e. B ) -> D e. CC ) |
||
| Assertion | fsum2mul | |- ( ph -> sum_ j e. A sum_ k e. B ( C x. D ) = ( sum_ j e. A C x. sum_ k e. B D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum2mul.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsum2mul.2 | |- ( ph -> B e. Fin ) |
|
| 3 | fsum2mul.3 | |- ( ( ph /\ j e. A ) -> C e. CC ) |
|
| 4 | fsum2mul.4 | |- ( ( ph /\ k e. B ) -> D e. CC ) |
|
| 5 | 2 4 | fsumcl | |- ( ph -> sum_ k e. B D e. CC ) |
| 6 | 1 5 3 | fsummulc1 | |- ( ph -> ( sum_ j e. A C x. sum_ k e. B D ) = sum_ j e. A ( C x. sum_ k e. B D ) ) |
| 7 | 2 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
| 8 | 4 | adantlr | |- ( ( ( ph /\ j e. A ) /\ k e. B ) -> D e. CC ) |
| 9 | 7 3 8 | fsummulc2 | |- ( ( ph /\ j e. A ) -> ( C x. sum_ k e. B D ) = sum_ k e. B ( C x. D ) ) |
| 10 | 9 | sumeq2dv | |- ( ph -> sum_ j e. A ( C x. sum_ k e. B D ) = sum_ j e. A sum_ k e. B ( C x. D ) ) |
| 11 | 6 10 | eqtr2d | |- ( ph -> sum_ j e. A sum_ k e. B ( C x. D ) = ( sum_ j e. A C x. sum_ k e. B D ) ) |