This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft . The proof demonstrates how this can be derived starting from from fsumshft . (Contributed by NM, 1-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumshftd.1 | |- ( ph -> K e. ZZ ) |
|
| fsumshftd.2 | |- ( ph -> M e. ZZ ) |
||
| fsumshftd.3 | |- ( ph -> N e. ZZ ) |
||
| fsumshftd.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
||
| fsumshftd.5 | |- ( ( ph /\ j = ( k - K ) ) -> A = B ) |
||
| Assertion | fsumshftd | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumshftd.1 | |- ( ph -> K e. ZZ ) |
|
| 2 | fsumshftd.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | fsumshftd.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | fsumshftd.4 | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) |
|
| 5 | fsumshftd.5 | |- ( ( ph /\ j = ( k - K ) ) -> A = B ) |
|
| 6 | csbeq1a | |- ( j = w -> A = [_ w / j ]_ A ) |
|
| 7 | nfcv | |- F/_ w A |
|
| 8 | nfcsb1v | |- F/_ j [_ w / j ]_ A |
|
| 9 | 6 7 8 | cbvsum | |- sum_ j e. ( M ... N ) A = sum_ w e. ( M ... N ) [_ w / j ]_ A |
| 10 | nfv | |- F/ j ( ph /\ w e. ( M ... N ) ) |
|
| 11 | 8 | nfel1 | |- F/ j [_ w / j ]_ A e. CC |
| 12 | 10 11 | nfim | |- F/ j ( ( ph /\ w e. ( M ... N ) ) -> [_ w / j ]_ A e. CC ) |
| 13 | eleq1w | |- ( j = w -> ( j e. ( M ... N ) <-> w e. ( M ... N ) ) ) |
|
| 14 | 13 | anbi2d | |- ( j = w -> ( ( ph /\ j e. ( M ... N ) ) <-> ( ph /\ w e. ( M ... N ) ) ) ) |
| 15 | 6 | eleq1d | |- ( j = w -> ( A e. CC <-> [_ w / j ]_ A e. CC ) ) |
| 16 | 14 15 | imbi12d | |- ( j = w -> ( ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) <-> ( ( ph /\ w e. ( M ... N ) ) -> [_ w / j ]_ A e. CC ) ) ) |
| 17 | 12 16 4 | chvarfv | |- ( ( ph /\ w e. ( M ... N ) ) -> [_ w / j ]_ A e. CC ) |
| 18 | csbeq1 | |- ( w = ( k - K ) -> [_ w / j ]_ A = [_ ( k - K ) / j ]_ A ) |
|
| 19 | 1 2 3 17 18 | fsumshft | |- ( ph -> sum_ w e. ( M ... N ) [_ w / j ]_ A = sum_ k e. ( ( M + K ) ... ( N + K ) ) [_ ( k - K ) / j ]_ A ) |
| 20 | ovexd | |- ( ph -> ( k - K ) e. _V ) |
|
| 21 | 20 5 | csbied | |- ( ph -> [_ ( k - K ) / j ]_ A = B ) |
| 22 | 21 | sumeq2sdv | |- ( ph -> sum_ k e. ( ( M + K ) ... ( N + K ) ) [_ ( k - K ) / j ]_ A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |
| 23 | 19 22 | eqtrd | |- ( ph -> sum_ w e. ( M ... N ) [_ w / j ]_ A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |
| 24 | 9 23 | eqtrid | |- ( ph -> sum_ j e. ( M ... N ) A = sum_ k e. ( ( M + K ) ... ( N + K ) ) B ) |