This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft . The proof demonstrates how this can be derived starting from from fsumshft . (Contributed by NM, 1-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumshftd.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| fsumshftd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| fsumshftd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| fsumshftd.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fsumshftd.5 | ⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑘 − 𝐾 ) ) → 𝐴 = 𝐵 ) | ||
| Assertion | fsumshftd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumshftd.1 | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 2 | fsumshftd.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | fsumshftd.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 4 | fsumshftd.4 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | fsumshftd.5 | ⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑘 − 𝐾 ) ) → 𝐴 = 𝐵 ) | |
| 6 | csbeq1a | ⊢ ( 𝑗 = 𝑤 → 𝐴 = ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑤 𝐴 | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝐴 | |
| 9 | 6 7 8 | cbvsum | ⊢ Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑤 / 𝑗 ⦌ 𝐴 |
| 10 | nfv | ⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 11 | 8 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ∈ ℂ |
| 12 | 10 11 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 13 | eleq1w | ⊢ ( 𝑗 = 𝑤 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 14 | 13 | anbi2d | ⊢ ( 𝑗 = 𝑤 → ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 15 | 6 | eleq1d | ⊢ ( 𝑗 = 𝑤 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) |
| 16 | 14 15 | imbi12d | ⊢ ( 𝑗 = 𝑤 → ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ∈ ℂ ) ) ) |
| 17 | 12 16 4 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑤 / 𝑗 ⦌ 𝐴 ∈ ℂ ) |
| 18 | csbeq1 | ⊢ ( 𝑤 = ( 𝑘 − 𝐾 ) → ⦋ 𝑤 / 𝑗 ⦌ 𝐴 = ⦋ ( 𝑘 − 𝐾 ) / 𝑗 ⦌ 𝐴 ) | |
| 19 | 1 2 3 17 18 | fsumshft | ⊢ ( 𝜑 → Σ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑤 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ⦋ ( 𝑘 − 𝐾 ) / 𝑗 ⦌ 𝐴 ) |
| 20 | ovexd | ⊢ ( 𝜑 → ( 𝑘 − 𝐾 ) ∈ V ) | |
| 21 | 20 5 | csbied | ⊢ ( 𝜑 → ⦋ ( 𝑘 − 𝐾 ) / 𝑗 ⦌ 𝐴 = 𝐵 ) |
| 22 | 21 | sumeq2sdv | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ⦋ ( 𝑘 − 𝐾 ) / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |
| 23 | 19 22 | eqtrd | ⊢ ( 𝜑 → Σ 𝑤 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑤 / 𝑗 ⦌ 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |
| 24 | 9 23 | eqtrid | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) 𝐵 ) |