This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of constant terms ( k is not free in C ) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsumdifsnconst | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝐶 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diffi | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ) | |
| 2 | 1 | anim1i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ∧ 𝐶 ∈ ℂ ) ) |
| 3 | 2 | 3adant2 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ∧ 𝐶 ∈ ℂ ) ) |
| 4 | fsumconst | ⊢ ( ( ( 𝐴 ∖ { 𝐵 } ) ∈ Fin ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝐶 = ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) · 𝐶 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝐶 = ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) · 𝐶 ) ) |
| 6 | hashdifsn | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) | |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) − 1 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ( ( ♯ ‘ ( 𝐴 ∖ { 𝐵 } ) ) · 𝐶 ) = ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 𝐶 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 𝐴 ∖ { 𝐵 } ) 𝐶 = ( ( ( ♯ ‘ 𝐴 ) − 1 ) · 𝐶 ) ) |