This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fsum0diag . (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsum0diaglem | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 | |- ( j e. ( 0 ... N ) -> 0 <_ j ) |
|
| 2 | 1 | adantr | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> 0 <_ j ) |
| 3 | elfz3nn0 | |- ( j e. ( 0 ... N ) -> N e. NN0 ) |
|
| 4 | 3 | adantr | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. NN0 ) |
| 5 | 4 | nn0zd | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. ZZ ) |
| 6 | 5 | zred | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. RR ) |
| 7 | elfzelz | |- ( j e. ( 0 ... N ) -> j e. ZZ ) |
|
| 8 | 7 | adantr | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ZZ ) |
| 9 | 8 | zred | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. RR ) |
| 10 | 6 9 | subge02d | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( 0 <_ j <-> ( N - j ) <_ N ) ) |
| 11 | 2 10 | mpbid | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - j ) <_ N ) |
| 12 | 5 8 | zsubcld | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - j ) e. ZZ ) |
| 13 | eluz | |- ( ( ( N - j ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( N - j ) ) <-> ( N - j ) <_ N ) ) |
|
| 14 | 12 5 13 | syl2anc | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N e. ( ZZ>= ` ( N - j ) ) <-> ( N - j ) <_ N ) ) |
| 15 | 11 14 | mpbird | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> N e. ( ZZ>= ` ( N - j ) ) ) |
| 16 | fzss2 | |- ( N e. ( ZZ>= ` ( N - j ) ) -> ( 0 ... ( N - j ) ) C_ ( 0 ... N ) ) |
|
| 17 | 15 16 | syl | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( 0 ... ( N - j ) ) C_ ( 0 ... N ) ) |
| 18 | simpr | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ( 0 ... ( N - j ) ) ) |
|
| 19 | 17 18 | sseldd | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ( 0 ... N ) ) |
| 20 | elfzelz | |- ( k e. ( 0 ... ( N - j ) ) -> k e. ZZ ) |
|
| 21 | 20 | adantl | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. ZZ ) |
| 22 | 21 | zred | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k e. RR ) |
| 23 | elfzle2 | |- ( k e. ( 0 ... ( N - j ) ) -> k <_ ( N - j ) ) |
|
| 24 | 23 | adantl | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> k <_ ( N - j ) ) |
| 25 | 22 6 9 24 | lesubd | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j <_ ( N - k ) ) |
| 26 | elfzuz | |- ( j e. ( 0 ... N ) -> j e. ( ZZ>= ` 0 ) ) |
|
| 27 | 26 | adantr | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ( ZZ>= ` 0 ) ) |
| 28 | 5 21 | zsubcld | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( N - k ) e. ZZ ) |
| 29 | elfz5 | |- ( ( j e. ( ZZ>= ` 0 ) /\ ( N - k ) e. ZZ ) -> ( j e. ( 0 ... ( N - k ) ) <-> j <_ ( N - k ) ) ) |
|
| 30 | 27 28 29 | syl2anc | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( j e. ( 0 ... ( N - k ) ) <-> j <_ ( N - k ) ) ) |
| 31 | 25 30 | mpbird | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> j e. ( 0 ... ( N - k ) ) ) |
| 32 | 19 31 | jca | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |