This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euanv | |- ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex | |- ( E! x ( ph /\ ps ) -> E. x ( ph /\ ps ) ) |
|
| 2 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 3 | 2 | exlimiv | |- ( E. x ( ph /\ ps ) -> ph ) |
| 4 | 1 3 | syl | |- ( E! x ( ph /\ ps ) -> ph ) |
| 5 | ibar | |- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
|
| 6 | 5 | eubidv | |- ( ph -> ( E! x ps <-> E! x ( ph /\ ps ) ) ) |
| 7 | 6 | biimprcd | |- ( E! x ( ph /\ ps ) -> ( ph -> E! x ps ) ) |
| 8 | 4 7 | jcai | |- ( E! x ( ph /\ ps ) -> ( ph /\ E! x ps ) ) |
| 9 | 6 | biimpa | |- ( ( ph /\ E! x ps ) -> E! x ( ph /\ ps ) ) |
| 10 | 8 9 | impbii | |- ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) ) |