This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | feu | |- ( ( F : A --> B /\ C e. A ) -> E! y e. B <. C , y >. e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 2 | fneu2 | |- ( ( F Fn A /\ C e. A ) -> E! y <. C , y >. e. F ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A --> B /\ C e. A ) -> E! y <. C , y >. e. F ) |
| 4 | opelf | |- ( ( F : A --> B /\ <. C , y >. e. F ) -> ( C e. A /\ y e. B ) ) |
|
| 5 | 4 | simprd | |- ( ( F : A --> B /\ <. C , y >. e. F ) -> y e. B ) |
| 6 | 5 | ex | |- ( F : A --> B -> ( <. C , y >. e. F -> y e. B ) ) |
| 7 | 6 | pm4.71rd | |- ( F : A --> B -> ( <. C , y >. e. F <-> ( y e. B /\ <. C , y >. e. F ) ) ) |
| 8 | 7 | eubidv | |- ( F : A --> B -> ( E! y <. C , y >. e. F <-> E! y ( y e. B /\ <. C , y >. e. F ) ) ) |
| 9 | 8 | adantr | |- ( ( F : A --> B /\ C e. A ) -> ( E! y <. C , y >. e. F <-> E! y ( y e. B /\ <. C , y >. e. F ) ) ) |
| 10 | 3 9 | mpbid | |- ( ( F : A --> B /\ C e. A ) -> E! y ( y e. B /\ <. C , y >. e. F ) ) |
| 11 | df-reu | |- ( E! y e. B <. C , y >. e. F <-> E! y ( y e. B /\ <. C , y >. e. F ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( F : A --> B /\ C e. A ) -> E! y e. B <. C , y >. e. F ) |