This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sess1 | |- ( R C_ S -> ( S Se A -> R Se A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( R C_ S /\ y e. A ) -> R C_ S ) |
|
| 2 | 1 | ssbrd | |- ( ( R C_ S /\ y e. A ) -> ( y R x -> y S x ) ) |
| 3 | 2 | ss2rabdv | |- ( R C_ S -> { y e. A | y R x } C_ { y e. A | y S x } ) |
| 4 | ssexg | |- ( ( { y e. A | y R x } C_ { y e. A | y S x } /\ { y e. A | y S x } e. _V ) -> { y e. A | y R x } e. _V ) |
|
| 5 | 4 | ex | |- ( { y e. A | y R x } C_ { y e. A | y S x } -> ( { y e. A | y S x } e. _V -> { y e. A | y R x } e. _V ) ) |
| 6 | 3 5 | syl | |- ( R C_ S -> ( { y e. A | y S x } e. _V -> { y e. A | y R x } e. _V ) ) |
| 7 | 6 | ralimdv | |- ( R C_ S -> ( A. x e. A { y e. A | y S x } e. _V -> A. x e. A { y e. A | y R x } e. _V ) ) |
| 8 | df-se | |- ( S Se A <-> A. x e. A { y e. A | y S x } e. _V ) |
|
| 9 | df-se | |- ( R Se A <-> A. x e. A { y e. A | y R x } e. _V ) |
|
| 10 | 7 8 9 | 3imtr4g | |- ( R C_ S -> ( S Se A -> R Se A ) ) |