This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the free monoid construction. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frmdval.m | |- M = ( freeMnd ` I ) |
|
| frmdval.b | |- ( I e. V -> B = Word I ) |
||
| frmdval.p | |- .+ = ( ++ |` ( B X. B ) ) |
||
| Assertion | frmdval | |- ( I e. V -> M = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdval.m | |- M = ( freeMnd ` I ) |
|
| 2 | frmdval.b | |- ( I e. V -> B = Word I ) |
|
| 3 | frmdval.p | |- .+ = ( ++ |` ( B X. B ) ) |
|
| 4 | df-frmd | |- freeMnd = ( i e. _V |-> { <. ( Base ` ndx ) , Word i >. , <. ( +g ` ndx ) , ( ++ |` ( Word i X. Word i ) ) >. } ) |
|
| 5 | wrdeq | |- ( i = I -> Word i = Word I ) |
|
| 6 | 2 | eqcomd | |- ( I e. V -> Word I = B ) |
| 7 | 5 6 | sylan9eqr | |- ( ( I e. V /\ i = I ) -> Word i = B ) |
| 8 | 7 | opeq2d | |- ( ( I e. V /\ i = I ) -> <. ( Base ` ndx ) , Word i >. = <. ( Base ` ndx ) , B >. ) |
| 9 | 7 | sqxpeqd | |- ( ( I e. V /\ i = I ) -> ( Word i X. Word i ) = ( B X. B ) ) |
| 10 | 9 | reseq2d | |- ( ( I e. V /\ i = I ) -> ( ++ |` ( Word i X. Word i ) ) = ( ++ |` ( B X. B ) ) ) |
| 11 | 10 3 | eqtr4di | |- ( ( I e. V /\ i = I ) -> ( ++ |` ( Word i X. Word i ) ) = .+ ) |
| 12 | 11 | opeq2d | |- ( ( I e. V /\ i = I ) -> <. ( +g ` ndx ) , ( ++ |` ( Word i X. Word i ) ) >. = <. ( +g ` ndx ) , .+ >. ) |
| 13 | 8 12 | preq12d | |- ( ( I e. V /\ i = I ) -> { <. ( Base ` ndx ) , Word i >. , <. ( +g ` ndx ) , ( ++ |` ( Word i X. Word i ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } ) |
| 14 | elex | |- ( I e. V -> I e. _V ) |
|
| 15 | prex | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } e. _V |
|
| 16 | 15 | a1i | |- ( I e. V -> { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } e. _V ) |
| 17 | 4 13 14 16 | fvmptd2 | |- ( I e. V -> ( freeMnd ` I ) = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } ) |
| 18 | 1 17 | eqtrid | |- ( I e. V -> M = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } ) |