This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmbas3.f | |- F = ( R freeLMod ( N X. M ) ) |
|
| frlmbas3.b | |- B = ( Base ` R ) |
||
| frlmbas3.v | |- V = ( Base ` F ) |
||
| Assertion | frlmbas3 | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> ( I X J ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmbas3.f | |- F = ( R freeLMod ( N X. M ) ) |
|
| 2 | frlmbas3.b | |- B = ( Base ` R ) |
|
| 3 | frlmbas3.v | |- V = ( Base ` F ) |
|
| 4 | 3 | eleq2i | |- ( X e. V <-> X e. ( Base ` F ) ) |
| 5 | 4 | biimpi | |- ( X e. V -> X e. ( Base ` F ) ) |
| 6 | 5 | adantl | |- ( ( R e. W /\ X e. V ) -> X e. ( Base ` F ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> X e. ( Base ` F ) ) |
| 8 | simpl | |- ( ( R e. W /\ X e. V ) -> R e. W ) |
|
| 9 | xpfi | |- ( ( N e. Fin /\ M e. Fin ) -> ( N X. M ) e. Fin ) |
|
| 10 | 8 9 | anim12i | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) ) -> ( R e. W /\ ( N X. M ) e. Fin ) ) |
| 11 | 10 | 3adant3 | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> ( R e. W /\ ( N X. M ) e. Fin ) ) |
| 12 | 1 2 | frlmfibas | |- ( ( R e. W /\ ( N X. M ) e. Fin ) -> ( B ^m ( N X. M ) ) = ( Base ` F ) ) |
| 13 | 11 12 | syl | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> ( B ^m ( N X. M ) ) = ( Base ` F ) ) |
| 14 | 7 13 | eleqtrrd | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> X e. ( B ^m ( N X. M ) ) ) |
| 15 | elmapi | |- ( X e. ( B ^m ( N X. M ) ) -> X : ( N X. M ) --> B ) |
|
| 16 | 14 15 | syl | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> X : ( N X. M ) --> B ) |
| 17 | simp3l | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> I e. N ) |
|
| 18 | simp3r | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> J e. M ) |
|
| 19 | 16 17 18 | fovcdmd | |- ( ( ( R e. W /\ X e. V ) /\ ( N e. Fin /\ M e. Fin ) /\ ( I e. N /\ J e. M ) ) -> ( I X J ) e. B ) |