This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpofrlmd.f | |- F = ( R freeLMod ( N X. M ) ) |
|
| mpofrlmd.v | |- V = ( Base ` F ) |
||
| mpofrlmd.s | |- ( ( i = a /\ j = b ) -> A = B ) |
||
| mpofrlmd.a | |- ( ( ph /\ i e. N /\ j e. M ) -> A e. X ) |
||
| mpofrlmd.b | |- ( ( ph /\ a e. N /\ b e. M ) -> B e. Y ) |
||
| mpofrlmd.e | |- ( ph -> ( N e. U /\ M e. W /\ Z e. V ) ) |
||
| Assertion | mpofrlmd | |- ( ph -> ( Z = ( a e. N , b e. M |-> B ) <-> A. i e. N A. j e. M ( i Z j ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpofrlmd.f | |- F = ( R freeLMod ( N X. M ) ) |
|
| 2 | mpofrlmd.v | |- V = ( Base ` F ) |
|
| 3 | mpofrlmd.s | |- ( ( i = a /\ j = b ) -> A = B ) |
|
| 4 | mpofrlmd.a | |- ( ( ph /\ i e. N /\ j e. M ) -> A e. X ) |
|
| 5 | mpofrlmd.b | |- ( ( ph /\ a e. N /\ b e. M ) -> B e. Y ) |
|
| 6 | mpofrlmd.e | |- ( ph -> ( N e. U /\ M e. W /\ Z e. V ) ) |
|
| 7 | xpexg | |- ( ( N e. U /\ M e. W ) -> ( N X. M ) e. _V ) |
|
| 8 | 7 | anim1i | |- ( ( ( N e. U /\ M e. W ) /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) ) |
| 9 | 8 | 3impa | |- ( ( N e. U /\ M e. W /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) ) |
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 1 10 2 | frlmbasf | |- ( ( ( N X. M ) e. _V /\ Z e. V ) -> Z : ( N X. M ) --> ( Base ` R ) ) |
| 12 | ffn | |- ( Z : ( N X. M ) --> ( Base ` R ) -> Z Fn ( N X. M ) ) |
|
| 13 | 6 9 11 12 | 4syl | |- ( ph -> Z Fn ( N X. M ) ) |
| 14 | 13 3 4 5 | fnmpoovd | |- ( ph -> ( Z = ( a e. N , b e. M |-> B ) <-> A. i e. N A. j e. M ( i Z j ) = A ) ) |