This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: This is the definition for the well-founded recursion generator. Similar to df-wrecs and df-recs , it is a direct definition form of normally recursive relationships. Unlike the former two definitions, it only requires a well-founded set-like relationship for its properties, not a well-ordered relationship. This proof requires either a partial order or the axiom of infinity. We develop the theorems twice, once with a partial order and once without. The second development occurs later in the database, after ax-inf has been introduced. (Contributed by Scott Fenton, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-frecs | |- frecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cR | |- R |
|
| 1 | cA | |- A |
|
| 2 | cF | |- F |
|
| 3 | 1 0 2 | cfrecs | |- frecs ( R , A , F ) |
| 4 | vf | |- f |
|
| 5 | vx | |- x |
|
| 6 | 4 | cv | |- f |
| 7 | 5 | cv | |- x |
| 8 | 6 7 | wfn | |- f Fn x |
| 9 | 7 1 | wss | |- x C_ A |
| 10 | vy | |- y |
|
| 11 | 10 | cv | |- y |
| 12 | 1 0 11 | cpred | |- Pred ( R , A , y ) |
| 13 | 12 7 | wss | |- Pred ( R , A , y ) C_ x |
| 14 | 13 10 7 | wral | |- A. y e. x Pred ( R , A , y ) C_ x |
| 15 | 9 14 | wa | |- ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) |
| 16 | 11 6 | cfv | |- ( f ` y ) |
| 17 | 6 12 | cres | |- ( f |` Pred ( R , A , y ) ) |
| 18 | 11 17 2 | co | |- ( y F ( f |` Pred ( R , A , y ) ) ) |
| 19 | 16 18 | wceq | |- ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) |
| 20 | 19 10 7 | wral | |- A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) |
| 21 | 8 15 20 | w3a | |- ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) |
| 22 | 21 5 | wex | |- E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) |
| 23 | 22 4 | cab | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
| 24 | 23 | cuni | |- U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |
| 25 | 3 24 | wceq | |- frecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y F ( f |` Pred ( R , A , y ) ) ) ) } |