This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nffrecs.1 | |- F/_ x R |
|
| nffrecs.2 | |- F/_ x A |
||
| nffrecs.3 | |- F/_ x F |
||
| Assertion | nffrecs | |- F/_ x frecs ( R , A , F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffrecs.1 | |- F/_ x R |
|
| 2 | nffrecs.2 | |- F/_ x A |
|
| 3 | nffrecs.3 | |- F/_ x F |
|
| 4 | df-frecs | |- frecs ( R , A , F ) = U. { f | E. y ( f Fn y /\ ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) /\ A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) ) } |
|
| 5 | nfv | |- F/ x f Fn y |
|
| 6 | nfcv | |- F/_ x y |
|
| 7 | 6 2 | nfss | |- F/ x y C_ A |
| 8 | nfcv | |- F/_ x z |
|
| 9 | 1 2 8 | nfpred | |- F/_ x Pred ( R , A , z ) |
| 10 | 9 6 | nfss | |- F/ x Pred ( R , A , z ) C_ y |
| 11 | 6 10 | nfralw | |- F/ x A. z e. y Pred ( R , A , z ) C_ y |
| 12 | 7 11 | nfan | |- F/ x ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) |
| 13 | nfcv | |- F/_ x f |
|
| 14 | 13 9 | nfres | |- F/_ x ( f |` Pred ( R , A , z ) ) |
| 15 | 8 3 14 | nfov | |- F/_ x ( z F ( f |` Pred ( R , A , z ) ) ) |
| 16 | 15 | nfeq2 | |- F/ x ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) |
| 17 | 6 16 | nfralw | |- F/ x A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) |
| 18 | 5 12 17 | nf3an | |- F/ x ( f Fn y /\ ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) /\ A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) ) |
| 19 | 18 | nfex | |- F/ x E. y ( f Fn y /\ ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) /\ A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) ) |
| 20 | 19 | nfab | |- F/_ x { f | E. y ( f Fn y /\ ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) /\ A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) ) } |
| 21 | 20 | nfuni | |- F/_ x U. { f | E. y ( f Fn y /\ ( y C_ A /\ A. z e. y Pred ( R , A , z ) C_ y ) /\ A. z e. y ( f ` z ) = ( z F ( f |` Pred ( R , A , z ) ) ) ) } |
| 22 | 4 21 | nfcxfr | |- F/_ x frecs ( R , A , F ) |