This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | predeq123 | |- ( ( R = S /\ A = B /\ X = Y ) -> Pred ( R , A , X ) = Pred ( S , B , Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | |- ( ( R = S /\ A = B /\ X = Y ) -> A = B ) |
|
| 2 | cnveq | |- ( R = S -> `' R = `' S ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( R = S /\ A = B /\ X = Y ) -> `' R = `' S ) |
| 4 | sneq | |- ( X = Y -> { X } = { Y } ) |
|
| 5 | 4 | 3ad2ant3 | |- ( ( R = S /\ A = B /\ X = Y ) -> { X } = { Y } ) |
| 6 | 3 5 | imaeq12d | |- ( ( R = S /\ A = B /\ X = Y ) -> ( `' R " { X } ) = ( `' S " { Y } ) ) |
| 7 | 1 6 | ineq12d | |- ( ( R = S /\ A = B /\ X = Y ) -> ( A i^i ( `' R " { X } ) ) = ( B i^i ( `' S " { Y } ) ) ) |
| 8 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 9 | df-pred | |- Pred ( S , B , Y ) = ( B i^i ( `' S " { Y } ) ) |
|
| 10 | 7 8 9 | 3eqtr4g | |- ( ( R = S /\ A = B /\ X = Y ) -> Pred ( R , A , X ) = Pred ( S , B , Y ) ) |