This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product of integers is divisible by any of its factors. (Contributed by AV, 14-Aug-2020) (Proof shortened by AV, 2-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fproddvdsd.f | |- ( ph -> A e. Fin ) |
|
| fproddvdsd.s | |- ( ph -> A C_ ZZ ) |
||
| Assertion | fproddvdsd | |- ( ph -> A. x e. A x || prod_ k e. A k ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fproddvdsd.f | |- ( ph -> A e. Fin ) |
|
| 2 | fproddvdsd.s | |- ( ph -> A C_ ZZ ) |
|
| 3 | f1oi | |- ( _I |` ZZ ) : ZZ -1-1-onto-> ZZ |
|
| 4 | f1of | |- ( ( _I |` ZZ ) : ZZ -1-1-onto-> ZZ -> ( _I |` ZZ ) : ZZ --> ZZ ) |
|
| 5 | 3 4 | mp1i | |- ( ph -> ( _I |` ZZ ) : ZZ --> ZZ ) |
| 6 | 1 2 5 | fprodfvdvdsd | |- ( ph -> A. x e. A ( ( _I |` ZZ ) ` x ) || prod_ k e. A ( ( _I |` ZZ ) ` k ) ) |
| 7 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. ZZ ) |
| 8 | fvresi | |- ( x e. ZZ -> ( ( _I |` ZZ ) ` x ) = x ) |
|
| 9 | 7 8 | syl | |- ( ( ph /\ x e. A ) -> ( ( _I |` ZZ ) ` x ) = x ) |
| 10 | 9 | eqcomd | |- ( ( ph /\ x e. A ) -> x = ( ( _I |` ZZ ) ` x ) ) |
| 11 | 2 | sseld | |- ( ph -> ( k e. A -> k e. ZZ ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. A ) -> ( k e. A -> k e. ZZ ) ) |
| 13 | 12 | imp | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> k e. ZZ ) |
| 14 | fvresi | |- ( k e. ZZ -> ( ( _I |` ZZ ) ` k ) = k ) |
|
| 15 | 13 14 | syl | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> ( ( _I |` ZZ ) ` k ) = k ) |
| 16 | 15 | eqcomd | |- ( ( ( ph /\ x e. A ) /\ k e. A ) -> k = ( ( _I |` ZZ ) ` k ) ) |
| 17 | 16 | prodeq2dv | |- ( ( ph /\ x e. A ) -> prod_ k e. A k = prod_ k e. A ( ( _I |` ZZ ) ` k ) ) |
| 18 | 10 17 | breq12d | |- ( ( ph /\ x e. A ) -> ( x || prod_ k e. A k <-> ( ( _I |` ZZ ) ` x ) || prod_ k e. A ( ( _I |` ZZ ) ` k ) ) ) |
| 19 | 18 | ralbidva | |- ( ph -> ( A. x e. A x || prod_ k e. A k <-> A. x e. A ( ( _I |` ZZ ) ` x ) || prod_ k e. A ( ( _I |` ZZ ) ` k ) ) ) |
| 20 | 6 19 | mpbird | |- ( ph -> A. x e. A x || prod_ k e. A k ) |