This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite product. A version of fprodsplit1 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplit1f.kph | |- F/ k ph |
|
| fprodsplit1f.fk | |- ( ph -> F/_ k D ) |
||
| fprodsplit1f.a | |- ( ph -> A e. Fin ) |
||
| fprodsplit1f.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fprodsplit1f.c | |- ( ph -> C e. A ) |
||
| fprodsplit1f.d | |- ( ( ph /\ k = C ) -> B = D ) |
||
| Assertion | fprodsplit1f | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit1f.kph | |- F/ k ph |
|
| 2 | fprodsplit1f.fk | |- ( ph -> F/_ k D ) |
|
| 3 | fprodsplit1f.a | |- ( ph -> A e. Fin ) |
|
| 4 | fprodsplit1f.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 5 | fprodsplit1f.c | |- ( ph -> C e. A ) |
|
| 6 | fprodsplit1f.d | |- ( ( ph /\ k = C ) -> B = D ) |
|
| 7 | disjdif | |- ( { C } i^i ( A \ { C } ) ) = (/) |
|
| 8 | 7 | a1i | |- ( ph -> ( { C } i^i ( A \ { C } ) ) = (/) ) |
| 9 | 5 | snssd | |- ( ph -> { C } C_ A ) |
| 10 | undif | |- ( { C } C_ A <-> ( { C } u. ( A \ { C } ) ) = A ) |
|
| 11 | 9 10 | sylib | |- ( ph -> ( { C } u. ( A \ { C } ) ) = A ) |
| 12 | 11 | eqcomd | |- ( ph -> A = ( { C } u. ( A \ { C } ) ) ) |
| 13 | 1 8 12 3 4 | fprodsplitf | |- ( ph -> prod_ k e. A B = ( prod_ k e. { C } B x. prod_ k e. ( A \ { C } ) B ) ) |
| 14 | 5 | ancli | |- ( ph -> ( ph /\ C e. A ) ) |
| 15 | nfv | |- F/ k C e. A |
|
| 16 | 1 15 | nfan | |- F/ k ( ph /\ C e. A ) |
| 17 | nfcsb1v | |- F/_ k [_ C / k ]_ B |
|
| 18 | 17 | nfel1 | |- F/ k [_ C / k ]_ B e. CC |
| 19 | 16 18 | nfim | |- F/ k ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) |
| 20 | eleq1 | |- ( k = C -> ( k e. A <-> C e. A ) ) |
|
| 21 | 20 | anbi2d | |- ( k = C -> ( ( ph /\ k e. A ) <-> ( ph /\ C e. A ) ) ) |
| 22 | csbeq1a | |- ( k = C -> B = [_ C / k ]_ B ) |
|
| 23 | 22 | eleq1d | |- ( k = C -> ( B e. CC <-> [_ C / k ]_ B e. CC ) ) |
| 24 | 21 23 | imbi12d | |- ( k = C -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) ) |
| 25 | 19 24 4 | vtoclg1f | |- ( C e. A -> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) |
| 26 | 5 14 25 | sylc | |- ( ph -> [_ C / k ]_ B e. CC ) |
| 27 | prodsns | |- ( ( C e. A /\ [_ C / k ]_ B e. CC ) -> prod_ k e. { C } B = [_ C / k ]_ B ) |
|
| 28 | 5 26 27 | syl2anc | |- ( ph -> prod_ k e. { C } B = [_ C / k ]_ B ) |
| 29 | 1 2 5 6 | csbiedf | |- ( ph -> [_ C / k ]_ B = D ) |
| 30 | 28 29 | eqtrd | |- ( ph -> prod_ k e. { C } B = D ) |
| 31 | 30 | oveq1d | |- ( ph -> ( prod_ k e. { C } B x. prod_ k e. ( A \ { C } ) B ) = ( D x. prod_ k e. ( A \ { C } ) B ) ) |
| 32 | 13 31 | eqtrd | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |