This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak version of fpr2 which is useful for proofs that avoid the axiom of replacement. (Contributed by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpr2a.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | fpr2a | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpr2a.1 | |- F = frecs ( R , A , G ) |
|
| 2 | fveq2 | |- ( y = X -> ( F ` y ) = ( F ` X ) ) |
|
| 3 | id | |- ( y = X -> y = X ) |
|
| 4 | predeq3 | |- ( y = X -> Pred ( R , A , y ) = Pred ( R , A , X ) ) |
|
| 5 | 4 | reseq2d | |- ( y = X -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , X ) ) ) |
| 6 | 3 5 | oveq12d | |- ( y = X -> ( y G ( F |` Pred ( R , A , y ) ) ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| 7 | 2 6 | eqeq12d | |- ( y = X -> ( ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) <-> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
| 8 | 7 | imbi2d | |- ( y = X -> ( ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) <-> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) ) |
| 9 | eqid | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 10 | 9 1 | fprlem1 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 11 | 9 1 10 | frrlem10 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. dom F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) |
| 12 | 11 | expcom | |- ( y e. dom F -> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) |
| 13 | 8 12 | vtoclga | |- ( X e. dom F -> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) |
| 14 | 13 | impcom | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |