This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopab3 | |- ( A. x e. A E. y ph <-> dom { <. x , y >. | ( x e. A /\ ph ) } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | |- ( A. x e. A E. y ph <-> A. x ( x e. A -> E. y ph ) ) |
|
| 2 | pm4.71 | |- ( ( x e. A -> E. y ph ) <-> ( x e. A <-> ( x e. A /\ E. y ph ) ) ) |
|
| 3 | 2 | albii | |- ( A. x ( x e. A -> E. y ph ) <-> A. x ( x e. A <-> ( x e. A /\ E. y ph ) ) ) |
| 4 | dmopab | |- dom { <. x , y >. | ( x e. A /\ ph ) } = { x | E. y ( x e. A /\ ph ) } |
|
| 5 | 19.42v | |- ( E. y ( x e. A /\ ph ) <-> ( x e. A /\ E. y ph ) ) |
|
| 6 | 5 | abbii | |- { x | E. y ( x e. A /\ ph ) } = { x | ( x e. A /\ E. y ph ) } |
| 7 | 4 6 | eqtri | |- dom { <. x , y >. | ( x e. A /\ ph ) } = { x | ( x e. A /\ E. y ph ) } |
| 8 | 7 | eqeq1i | |- ( dom { <. x , y >. | ( x e. A /\ ph ) } = A <-> { x | ( x e. A /\ E. y ph ) } = A ) |
| 9 | eqcom | |- ( A = { x | ( x e. A /\ E. y ph ) } <-> { x | ( x e. A /\ E. y ph ) } = A ) |
|
| 10 | eqabb | |- ( A = { x | ( x e. A /\ E. y ph ) } <-> A. x ( x e. A <-> ( x e. A /\ E. y ph ) ) ) |
|
| 11 | 8 9 10 | 3bitr2ri | |- ( A. x ( x e. A <-> ( x e. A /\ E. y ph ) ) <-> dom { <. x , y >. | ( x e. A /\ ph ) } = A ) |
| 12 | 1 3 11 | 3bitri | |- ( A. x e. A E. y ph <-> dom { <. x , y >. | ( x e. A /\ ph ) } = A ) |