This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 26-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oprabco.1 | |- ( ( x e. A /\ y e. B ) -> C e. D ) |
|
| oprabco.2 | |- F = ( x e. A , y e. B |-> C ) |
||
| oprabco.3 | |- G = ( x e. A , y e. B |-> ( H ` C ) ) |
||
| Assertion | oprabco | |- ( H Fn D -> G = ( H o. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabco.1 | |- ( ( x e. A /\ y e. B ) -> C e. D ) |
|
| 2 | oprabco.2 | |- F = ( x e. A , y e. B |-> C ) |
|
| 3 | oprabco.3 | |- G = ( x e. A , y e. B |-> ( H ` C ) ) |
|
| 4 | 1 | adantl | |- ( ( H Fn D /\ ( x e. A /\ y e. B ) ) -> C e. D ) |
| 5 | 2 | a1i | |- ( H Fn D -> F = ( x e. A , y e. B |-> C ) ) |
| 6 | dffn5 | |- ( H Fn D <-> H = ( z e. D |-> ( H ` z ) ) ) |
|
| 7 | 6 | biimpi | |- ( H Fn D -> H = ( z e. D |-> ( H ` z ) ) ) |
| 8 | fveq2 | |- ( z = C -> ( H ` z ) = ( H ` C ) ) |
|
| 9 | 4 5 7 8 | fmpoco | |- ( H Fn D -> ( H o. F ) = ( x e. A , y e. B |-> ( H ` C ) ) ) |
| 10 | 3 9 | eqtr4id | |- ( H Fn D -> G = ( H o. F ) ) |