This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flltdivnn0lt | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K < N -> ( |_ ` ( K / L ) ) < ( N / L ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0nndivcl | |- ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |
|
| 2 | reflcl | |- ( ( K / L ) e. RR -> ( |_ ` ( K / L ) ) e. RR ) |
|
| 3 | 1 2 | syl | |- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. RR ) |
| 4 | 3 | 3adant2 | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. RR ) |
| 5 | 1 | 3adant2 | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K / L ) e. RR ) |
| 6 | nn0nndivcl | |- ( ( N e. NN0 /\ L e. NN ) -> ( N / L ) e. RR ) |
|
| 7 | 6 | 3adant1 | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( N / L ) e. RR ) |
| 8 | 4 5 7 | 3jca | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) ) |
| 9 | 8 | adantr | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) ) |
| 10 | fldivnn0le | |- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
|
| 11 | 10 | 3adant2 | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
| 12 | 11 | adantr | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) ) |
| 13 | simpr | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> K < N ) |
|
| 14 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 15 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 16 | nnre | |- ( L e. NN -> L e. RR ) |
|
| 17 | nngt0 | |- ( L e. NN -> 0 < L ) |
|
| 18 | 16 17 | jca | |- ( L e. NN -> ( L e. RR /\ 0 < L ) ) |
| 19 | 14 15 18 | 3anim123i | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) ) |
| 20 | 19 | adantr | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) ) |
| 21 | ltdiv1 | |- ( ( K e. RR /\ N e. RR /\ ( L e. RR /\ 0 < L ) ) -> ( K < N <-> ( K / L ) < ( N / L ) ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K < N <-> ( K / L ) < ( N / L ) ) ) |
| 23 | 13 22 | mpbid | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( K / L ) < ( N / L ) ) |
| 24 | 12 23 | jca | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( N / L ) ) ) |
| 25 | lelttr | |- ( ( ( |_ ` ( K / L ) ) e. RR /\ ( K / L ) e. RR /\ ( N / L ) e. RR ) -> ( ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( N / L ) ) -> ( |_ ` ( K / L ) ) < ( N / L ) ) ) |
|
| 26 | 9 24 25 | sylc | |- ( ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) /\ K < N ) -> ( |_ ` ( K / L ) ) < ( N / L ) ) |
| 27 | 26 | ex | |- ( ( K e. NN0 /\ N e. NN0 /\ L e. NN ) -> ( K < N -> ( |_ ` ( K / L ) ) < ( N / L ) ) ) |