This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the limit point predicate. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimuni.1 | |- X = U. J |
|
| Assertion | flimfil | |- ( A e. ( J fLim F ) -> F e. ( Fil ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimuni.1 | |- X = U. J |
|
| 2 | 1 | elflim2 | |- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 3 | 2 | simplbi | |- ( A e. ( J fLim F ) -> ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) ) |
| 4 | 3 | simp2d | |- ( A e. ( J fLim F ) -> F e. U. ran Fil ) |
| 5 | filunirn | |- ( F e. U. ran Fil <-> F e. ( Fil ` U. F ) ) |
|
| 6 | 4 5 | sylib | |- ( A e. ( J fLim F ) -> F e. ( Fil ` U. F ) ) |
| 7 | 3 | simp3d | |- ( A e. ( J fLim F ) -> F C_ ~P X ) |
| 8 | sspwuni | |- ( F C_ ~P X <-> U. F C_ X ) |
|
| 9 | 7 8 | sylib | |- ( A e. ( J fLim F ) -> U. F C_ X ) |
| 10 | flimneiss | |- ( A e. ( J fLim F ) -> ( ( nei ` J ) ` { A } ) C_ F ) |
|
| 11 | flimtop | |- ( A e. ( J fLim F ) -> J e. Top ) |
|
| 12 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 13 | 11 12 | syl | |- ( A e. ( J fLim F ) -> X e. J ) |
| 14 | 1 | flimelbas | |- ( A e. ( J fLim F ) -> A e. X ) |
| 15 | opnneip | |- ( ( J e. Top /\ X e. J /\ A e. X ) -> X e. ( ( nei ` J ) ` { A } ) ) |
|
| 16 | 11 13 14 15 | syl3anc | |- ( A e. ( J fLim F ) -> X e. ( ( nei ` J ) ` { A } ) ) |
| 17 | 10 16 | sseldd | |- ( A e. ( J fLim F ) -> X e. F ) |
| 18 | elssuni | |- ( X e. F -> X C_ U. F ) |
|
| 19 | 17 18 | syl | |- ( A e. ( J fLim F ) -> X C_ U. F ) |
| 20 | 9 19 | eqssd | |- ( A e. ( J fLim F ) -> U. F = X ) |
| 21 | 20 | fveq2d | |- ( A e. ( J fLim F ) -> ( Fil ` U. F ) = ( Fil ` X ) ) |
| 22 | 6 21 | eleqtrd | |- ( A e. ( J fLim F ) -> F e. ( Fil ` X ) ) |