This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uffcfflf | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( ( J fLimf L ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax | |- ( J e. ( TopOn ` X ) -> X e. J ) |
|
| 2 | fmufil | |- ( ( X e. J /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` L ) e. ( UFil ` X ) ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( X FilMap F ) ` L ) e. ( UFil ` X ) ) |
| 4 | uffclsflim | |- ( ( ( X FilMap F ) ` L ) e. ( UFil ` X ) -> ( J fClus ( ( X FilMap F ) ` L ) ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( J fClus ( ( X FilMap F ) ` L ) ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 6 | ufilfil | |- ( L e. ( UFil ` Y ) -> L e. ( Fil ` Y ) ) |
|
| 7 | fcfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( J fClus ( ( X FilMap F ) ` L ) ) ) |
|
| 8 | 6 7 | syl3an2 | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( J fClus ( ( X FilMap F ) ` L ) ) ) |
| 9 | flfval | |- ( ( J e. ( TopOn ` X ) /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
|
| 10 | 6 9 | syl3an2 | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( J fLimf L ) ` F ) = ( J fLim ( ( X FilMap F ) ` L ) ) ) |
| 11 | 5 8 10 | 3eqtr4d | |- ( ( J e. ( TopOn ` X ) /\ L e. ( UFil ` Y ) /\ F : Y --> X ) -> ( ( J fClusf L ) ` F ) = ( ( J fLimf L ) ` F ) ) |