This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Weak order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
||
| fin23lem.g | |- ( ph -> U. ran h C_ G ) |
||
| fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
||
| fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
||
| Assertion | fin23lem36 | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
|
| 3 | fin23lem.g | |- ( ph -> U. ran h C_ G ) |
|
| 4 | fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
|
| 5 | fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
|
| 6 | fveq2 | |- ( a = B -> ( Y ` a ) = ( Y ` B ) ) |
|
| 7 | 6 | rneqd | |- ( a = B -> ran ( Y ` a ) = ran ( Y ` B ) ) |
| 8 | 7 | unieqd | |- ( a = B -> U. ran ( Y ` a ) = U. ran ( Y ` B ) ) |
| 9 | 8 | sseq1d | |- ( a = B -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) |
| 10 | 9 | imbi2d | |- ( a = B -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) ) |
| 11 | fveq2 | |- ( a = b -> ( Y ` a ) = ( Y ` b ) ) |
|
| 12 | 11 | rneqd | |- ( a = b -> ran ( Y ` a ) = ran ( Y ` b ) ) |
| 13 | 12 | unieqd | |- ( a = b -> U. ran ( Y ` a ) = U. ran ( Y ` b ) ) |
| 14 | 13 | sseq1d | |- ( a = b -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) ) |
| 15 | 14 | imbi2d | |- ( a = b -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) ) ) |
| 16 | fveq2 | |- ( a = suc b -> ( Y ` a ) = ( Y ` suc b ) ) |
|
| 17 | 16 | rneqd | |- ( a = suc b -> ran ( Y ` a ) = ran ( Y ` suc b ) ) |
| 18 | 17 | unieqd | |- ( a = suc b -> U. ran ( Y ` a ) = U. ran ( Y ` suc b ) ) |
| 19 | 18 | sseq1d | |- ( a = suc b -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
| 20 | 19 | imbi2d | |- ( a = suc b -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
| 21 | fveq2 | |- ( a = A -> ( Y ` a ) = ( Y ` A ) ) |
|
| 22 | 21 | rneqd | |- ( a = A -> ran ( Y ` a ) = ran ( Y ` A ) ) |
| 23 | 22 | unieqd | |- ( a = A -> U. ran ( Y ` a ) = U. ran ( Y ` A ) ) |
| 24 | 23 | sseq1d | |- ( a = A -> ( U. ran ( Y ` a ) C_ U. ran ( Y ` B ) <-> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) |
| 25 | 24 | imbi2d | |- ( a = A -> ( ( ph -> U. ran ( Y ` a ) C_ U. ran ( Y ` B ) ) <-> ( ph -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) ) |
| 26 | ssid | |- U. ran ( Y ` B ) C_ U. ran ( Y ` B ) |
|
| 27 | 26 | 2a1i | |- ( B e. _om -> ( ph -> U. ran ( Y ` B ) C_ U. ran ( Y ` B ) ) ) |
| 28 | simprr | |- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> ph ) |
|
| 29 | simpll | |- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> b e. _om ) |
|
| 30 | 1 2 3 4 5 | fin23lem35 | |- ( ( ph /\ b e. _om ) -> U. ran ( Y ` suc b ) C. U. ran ( Y ` b ) ) |
| 31 | 28 29 30 | syl2anc | |- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> U. ran ( Y ` suc b ) C. U. ran ( Y ` b ) ) |
| 32 | 31 | pssssd | |- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` b ) ) |
| 33 | sstr2 | |- ( U. ran ( Y ` suc b ) C_ U. ran ( Y ` b ) -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( ( b e. _om /\ B e. _om ) /\ ( B C_ b /\ ph ) ) -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) |
| 35 | 34 | expr | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( U. ran ( Y ` b ) C_ U. ran ( Y ` B ) -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
| 36 | 35 | a2d | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( ph -> U. ran ( Y ` b ) C_ U. ran ( Y ` B ) ) -> ( ph -> U. ran ( Y ` suc b ) C_ U. ran ( Y ` B ) ) ) ) |
| 37 | 10 15 20 25 27 36 | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( ph -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) ) |
| 38 | 37 | impr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> U. ran ( Y ` A ) C_ U. ran ( Y ` B ) ) |