This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . Strict order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
||
| fin23lem.g | |- ( ph -> U. ran h C_ G ) |
||
| fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
||
| fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
||
| Assertion | fin23lem35 | |- ( ( ph /\ A e. _om ) -> U. ran ( Y ` suc A ) C. U. ran ( Y ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
|
| 3 | fin23lem.g | |- ( ph -> U. ran h C_ G ) |
|
| 4 | fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
|
| 5 | fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
|
| 6 | 1 2 3 4 5 | fin23lem34 | |- ( ( ph /\ A e. _om ) -> ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) ) |
| 7 | fvex | |- ( Y ` A ) e. _V |
|
| 8 | f1eq1 | |- ( j = ( Y ` A ) -> ( j : _om -1-1-> _V <-> ( Y ` A ) : _om -1-1-> _V ) ) |
|
| 9 | rneq | |- ( j = ( Y ` A ) -> ran j = ran ( Y ` A ) ) |
|
| 10 | 9 | unieqd | |- ( j = ( Y ` A ) -> U. ran j = U. ran ( Y ` A ) ) |
| 11 | 10 | sseq1d | |- ( j = ( Y ` A ) -> ( U. ran j C_ G <-> U. ran ( Y ` A ) C_ G ) ) |
| 12 | 8 11 | anbi12d | |- ( j = ( Y ` A ) -> ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) <-> ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) ) ) |
| 13 | fveq2 | |- ( j = ( Y ` A ) -> ( i ` j ) = ( i ` ( Y ` A ) ) ) |
|
| 14 | f1eq1 | |- ( ( i ` j ) = ( i ` ( Y ` A ) ) -> ( ( i ` j ) : _om -1-1-> _V <-> ( i ` ( Y ` A ) ) : _om -1-1-> _V ) ) |
|
| 15 | 13 14 | syl | |- ( j = ( Y ` A ) -> ( ( i ` j ) : _om -1-1-> _V <-> ( i ` ( Y ` A ) ) : _om -1-1-> _V ) ) |
| 16 | 13 | rneqd | |- ( j = ( Y ` A ) -> ran ( i ` j ) = ran ( i ` ( Y ` A ) ) ) |
| 17 | 16 | unieqd | |- ( j = ( Y ` A ) -> U. ran ( i ` j ) = U. ran ( i ` ( Y ` A ) ) ) |
| 18 | 17 10 | psseq12d | |- ( j = ( Y ` A ) -> ( U. ran ( i ` j ) C. U. ran j <-> U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) |
| 19 | 15 18 | anbi12d | |- ( j = ( Y ` A ) -> ( ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) <-> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) ) |
| 20 | 12 19 | imbi12d | |- ( j = ( Y ` A ) -> ( ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) <-> ( ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) -> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) ) ) |
| 21 | 7 20 | spcv | |- ( A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) -> ( ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) -> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) ) |
| 22 | 4 21 | syl | |- ( ph -> ( ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) -> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ A e. _om ) -> ( ( ( Y ` A ) : _om -1-1-> _V /\ U. ran ( Y ` A ) C_ G ) -> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) ) |
| 24 | 6 23 | mpd | |- ( ( ph /\ A e. _om ) -> ( ( i ` ( Y ` A ) ) : _om -1-1-> _V /\ U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) |
| 25 | 24 | simprd | |- ( ( ph /\ A e. _om ) -> U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) |
| 26 | frsuc | |- ( A e. _om -> ( ( rec ( i , h ) |` _om ) ` suc A ) = ( i ` ( ( rec ( i , h ) |` _om ) ` A ) ) ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ A e. _om ) -> ( ( rec ( i , h ) |` _om ) ` suc A ) = ( i ` ( ( rec ( i , h ) |` _om ) ` A ) ) ) |
| 28 | 5 | fveq1i | |- ( Y ` suc A ) = ( ( rec ( i , h ) |` _om ) ` suc A ) |
| 29 | 5 | fveq1i | |- ( Y ` A ) = ( ( rec ( i , h ) |` _om ) ` A ) |
| 30 | 29 | fveq2i | |- ( i ` ( Y ` A ) ) = ( i ` ( ( rec ( i , h ) |` _om ) ` A ) ) |
| 31 | 27 28 30 | 3eqtr4g | |- ( ( ph /\ A e. _om ) -> ( Y ` suc A ) = ( i ` ( Y ` A ) ) ) |
| 32 | 31 | rneqd | |- ( ( ph /\ A e. _om ) -> ran ( Y ` suc A ) = ran ( i ` ( Y ` A ) ) ) |
| 33 | 32 | unieqd | |- ( ( ph /\ A e. _om ) -> U. ran ( Y ` suc A ) = U. ran ( i ` ( Y ` A ) ) ) |
| 34 | 33 | psseq1d | |- ( ( ph /\ A e. _om ) -> ( U. ran ( Y ` suc A ) C. U. ran ( Y ` A ) <-> U. ran ( i ` ( Y ` A ) ) C. U. ran ( Y ` A ) ) ) |
| 35 | 25 34 | mpbird | |- ( ( ph /\ A e. _om ) -> U. ran ( Y ` suc A ) C. U. ran ( Y ` A ) ) |