This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
||
| fin23lem.g | |- ( ph -> U. ran h C_ G ) |
||
| fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
||
| fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
||
| Assertion | fin23lem38 | |- ( ph -> -. |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem33.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 2 | fin23lem.f | |- ( ph -> h : _om -1-1-> _V ) |
|
| 3 | fin23lem.g | |- ( ph -> U. ran h C_ G ) |
|
| 4 | fin23lem.h | |- ( ph -> A. j ( ( j : _om -1-1-> _V /\ U. ran j C_ G ) -> ( ( i ` j ) : _om -1-1-> _V /\ U. ran ( i ` j ) C. U. ran j ) ) ) |
|
| 5 | fin23lem.i | |- Y = ( rec ( i , h ) |` _om ) |
|
| 6 | peano2 | |- ( d e. _om -> suc d e. _om ) |
|
| 7 | eqid | |- U. ran ( Y ` suc d ) = U. ran ( Y ` suc d ) |
|
| 8 | fveq2 | |- ( b = suc d -> ( Y ` b ) = ( Y ` suc d ) ) |
|
| 9 | 8 | rneqd | |- ( b = suc d -> ran ( Y ` b ) = ran ( Y ` suc d ) ) |
| 10 | 9 | unieqd | |- ( b = suc d -> U. ran ( Y ` b ) = U. ran ( Y ` suc d ) ) |
| 11 | 10 | rspceeqv | |- ( ( suc d e. _om /\ U. ran ( Y ` suc d ) = U. ran ( Y ` suc d ) ) -> E. b e. _om U. ran ( Y ` suc d ) = U. ran ( Y ` b ) ) |
| 12 | 7 11 | mpan2 | |- ( suc d e. _om -> E. b e. _om U. ran ( Y ` suc d ) = U. ran ( Y ` b ) ) |
| 13 | fvex | |- ( Y ` suc d ) e. _V |
|
| 14 | 13 | rnex | |- ran ( Y ` suc d ) e. _V |
| 15 | 14 | uniex | |- U. ran ( Y ` suc d ) e. _V |
| 16 | eqid | |- ( b e. _om |-> U. ran ( Y ` b ) ) = ( b e. _om |-> U. ran ( Y ` b ) ) |
|
| 17 | 16 | elrnmpt | |- ( U. ran ( Y ` suc d ) e. _V -> ( U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) <-> E. b e. _om U. ran ( Y ` suc d ) = U. ran ( Y ` b ) ) ) |
| 18 | 15 17 | ax-mp | |- ( U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) <-> E. b e. _om U. ran ( Y ` suc d ) = U. ran ( Y ` b ) ) |
| 19 | 12 18 | sylibr | |- ( suc d e. _om -> U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) ) |
| 20 | 6 19 | syl | |- ( d e. _om -> U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ d e. _om ) -> U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) ) |
| 22 | intss1 | |- ( U. ran ( Y ` suc d ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) -> |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C_ U. ran ( Y ` suc d ) ) |
|
| 23 | 21 22 | syl | |- ( ( ph /\ d e. _om ) -> |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C_ U. ran ( Y ` suc d ) ) |
| 24 | 1 2 3 4 5 | fin23lem35 | |- ( ( ph /\ d e. _om ) -> U. ran ( Y ` suc d ) C. U. ran ( Y ` d ) ) |
| 25 | 23 24 | sspsstrd | |- ( ( ph /\ d e. _om ) -> |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C. U. ran ( Y ` d ) ) |
| 26 | dfpss2 | |- ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C. U. ran ( Y ` d ) <-> ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C_ U. ran ( Y ` d ) /\ -. |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) ) |
|
| 27 | 26 | simprbi | |- ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) C. U. ran ( Y ` d ) -> -. |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) |
| 28 | 25 27 | syl | |- ( ( ph /\ d e. _om ) -> -. |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) |
| 29 | 28 | nrexdv | |- ( ph -> -. E. d e. _om |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) |
| 30 | fveq2 | |- ( b = d -> ( Y ` b ) = ( Y ` d ) ) |
|
| 31 | 30 | rneqd | |- ( b = d -> ran ( Y ` b ) = ran ( Y ` d ) ) |
| 32 | 31 | unieqd | |- ( b = d -> U. ran ( Y ` b ) = U. ran ( Y ` d ) ) |
| 33 | 32 | cbvmptv | |- ( b e. _om |-> U. ran ( Y ` b ) ) = ( d e. _om |-> U. ran ( Y ` d ) ) |
| 34 | 33 | elrnmpt | |- ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) -> ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) <-> E. d e. _om |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) ) |
| 35 | 34 | ibi | |- ( |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) -> E. d e. _om |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) = U. ran ( Y ` d ) ) |
| 36 | 29 35 | nsyl | |- ( ph -> -. |^| ran ( b e. _om |-> U. ran ( Y ` b ) ) e. ran ( b e. _om |-> U. ran ( Y ` b ) ) ) |