This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fidmfisupp.1 | |- ( ph -> F : D --> R ) |
|
| fidmfisupp.2 | |- ( ph -> D e. Fin ) |
||
| fidmfisupp.3 | |- ( ph -> Z e. V ) |
||
| Assertion | fidmfisupp | |- ( ph -> F finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fidmfisupp.1 | |- ( ph -> F : D --> R ) |
|
| 2 | fidmfisupp.2 | |- ( ph -> D e. Fin ) |
|
| 3 | fidmfisupp.3 | |- ( ph -> Z e. V ) |
|
| 4 | 1 2 | fexd | |- ( ph -> F e. _V ) |
| 5 | suppimacnv | |- ( ( F e. _V /\ Z e. V ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
|
| 6 | 4 3 5 | syl2anc | |- ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) ) |
| 7 | 2 1 | fisuppfi | |- ( ph -> ( `' F " ( _V \ { Z } ) ) e. Fin ) |
| 8 | 6 7 | eqeltrd | |- ( ph -> ( F supp Z ) e. Fin ) |
| 9 | 1 | ffund | |- ( ph -> Fun F ) |
| 10 | funisfsupp | |- ( ( Fun F /\ F e. _V /\ Z e. V ) -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
|
| 11 | 9 4 3 10 | syl3anc | |- ( ph -> ( F finSupp Z <-> ( F supp Z ) e. Fin ) ) |
| 12 | 8 11 | mpbird | |- ( ph -> F finSupp Z ) |